Hello:
Balanced equation:
2 Na + FeBr2 = 2 NaBr + Fe
Reaction type: single replacement
Hope that helps!
I think it’s c but I could be wrong
Answer:
0.26g of NaCl is the maximum mass that could be produced
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H₂O
<em>Where 1 mol of HCl reacts per mol of NaOH to produce 1 mol of NaCl</em>
<em />
To solve this question we need to find <em>limiting reactant. </em>The moles of limiting reactant = Moles of NaCl produced:
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
0.365g HCl * (1mol / 36.46g) = 0.010 moles HCl
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
0.18g NaOH * (1mol / 40g) = 0.0045 moles NaOH
As the reaction is 1:1 and moles NaOH < moles HCl, limiting reactant is NaOH and maximum moles produced of NaCl are 0.0045 moles.
The mass of NaCl is:
<em>Mass NaCl -Molar mass: 58.44g/mol-:</em>
0.0045 moles * (58.44g/mol) =
<h3>0.26g of NaCl is the maximum mass that could be produced</h3>
Answer:
we cannot vduurggruuriirru**
Answer:
The answer to your question is : letter B. 0.25 atm
Explanation:
To solve this problem we need to use the combined gas law:
<u>P₁V₁</u> = <u>P₂V₂</u>
T₁ T₂
Data
P1 = 0.99 atm V1 = 2 l T1 = 273K
P2 = ? V2 = 4 l T2 = 137K
Now, the clear P2 from the equation and we get
P2 = P1V1T2 / T1V2
Substitution P2 = (2 x 0.99 x 137)/(273 x 4)
P2 = 271.26 / 1092
Result P2 = 0.248 atm ≈ 0.25 atm