Answer:
True.
Explanation:
An exothermic reaction has a positive enthalpy (heat) of reaction. However, it can be negative in some circumstances.
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
The volume of O₂ produced: 84.6 L
<h3>Further explanation</h3>
Given
7.93 mol of dinitrogen pentoxide
T = 48 + 273 = 321 K
P = 125 kPa = 1,23365 atm
Required
Volume of O₂
Solution
Decomposition reaction of dinitrogen pentoxide
2N₂O₅(g)→4NO₂(g)+O₂ (g)
From the equation, mol ratio N₂O₅ : O₂ = 2 : 1, so mol O₂ :
= 0.5 x mol N₂O₅
= 0.5 x 7.93
= 3.965 moles
The volume of O₂ :
