Answer:
None of the options are correct.
Explanation:
1) when the temperature of the solution is increased the solubility of the gas in the liquid decreases , hence option 1 is incorrect.
2)The heat released by the dissolution of an ionic compound in water is heat of hydration of the compound and is independent of the initial temperature of the solution.
3) The solubility of a liquid in water is not affected significantly by the pressure changes in the system as gases only have a significant cahne in solubility with change in pressure.
Electron affinity corresponds to the energy released when an electron is added to<span> a </span>neutral atom in the gas phase<span>.
hope this helps!</span>
Answer:
A; or carnivores that feed on producers
Explanation:
Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL
Answer:
The final volume when pressure is changed is 126.1mL
Explanation:
Based on Boyle's law, in a gas the volume is inversely proportional to its pressure when temperature remains constant. The equation is:
P₁V₁ = P₂V₂
<em>Where P is pressure and V volume of 1, intial state and 2, final state.</em>
<em />
Computing the values of the problem:
350mmHg*200mL = 555mmHgV₂
126.1mmHg = V₂
<h3>The final volume when pressure is changed is 126.1mL</h3>