Answer: 1 molar NaOH contains 40 grams of NaOH per every liter of water
Explanation:
so 2 M NaOH contains twice that amount, ie. 80 grams per liter. Then, ine 250 ml of weater, there should be 80/4 = 20 grams of solid NaOH dissolved.
To calculate the molarity of a solution, you divide the moles of solute by the volume of the solution expressed in liters. Note that the volume is in liters of solution and not liters of solvent. When a molarity is reported, the unit is the symbol M and is read as “molar”.
I hope this helped :)
Please make me the branliest! Have a good night/ good day!!
Answer:
0.33 mol/kg NH₃
Explanation:
Data:
b(NH₃) = 0.33 mol/kg
b(Na₂SO₄) = 0.10 mol/ kg
Calculations:
The formula for the boiling point elevation ΔTb is

i is the van’t Hoff factor — the number of moles of particles you get from a solute.
(a) For NH₃,
The ammonia is a weak electrolyte, so it exists almost entirely as molecules in solution.
1 mol NH₃ ⟶ 1 mol particles
i ≈ 1, and ib = 1 × 0.33 = 0.33 mol particles per kilogram of water
(b) For Na₂SO₄,
Na₂SO₄(aq) ⟶ 2Na⁺(aq) + 2SO₄²⁻(aq)
1 mol Na₂SO₄ ⟶ 3 mol particles
i = 1 and ib = 3 × 0.10 = 0.30 mol particles per kilogram of water
The NH₃ has more moles of particles, so it has the higher boiling point.
<span> Positive Ion - Occurs when an atom loses an electron (negative charge) it has more </span>protons<span> than electrons.</span>
3.
∆E = ∆m x c ² ∆m = E / c ² ∆m = 3,83•10^-12 / 3•10^8 ² ∆m = 4,256•10^-29 kg
Taking this class as well