1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
11

Most automobiles have a coolant reservoir to catch radiator fluid that may overflow when the engine is hot. A radiator is made o

f copper and is filled to its 16.0-L capacity when at 10.0ºC. What volume of radiator fluid will overflow when the radiator and fluid reach their 95.0ºC operating temperature, given that the fluid volume coefficient of expansion is β = 400×10^{-6}/ ºC
Physics
1 answer:
Colt1911 [192]3 years ago
6 0

Answer:

There is a loss of fluid in the  container of 0.475L

Explanation:

To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.

The formula that describes this thermal expansion process is given by:

\Delta V = \beta V_0 \Delta T

Where,

\Delta V =Change in volume

V_0 =Initial Volume

\Delta T = Change in temperature

\beta = coefficient of volume expansion (Coefficient of copper and of the liquid for this case)

There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,

\Delta V_T = \Delta V_l - \Delta V_c

Where,

\Delta V_l= Change in the volume of liquid

\Delta V_c= Change in the volume of copper

Then replacing with the previous equation we have:

\Delta V = \beta_l V_0 \Delta T- \beta_c V_0 \Delta T

\Delta V = (\beta_l-\beta_c)V_0\Delta T

Our values are given as,

Thermal expansion coefficient for copper and the liquid to 20°C is

\beta_c = 51*10^{-6}/\°C

\beta_l = 400*10^{-6}/\°C

V_0 = 16L

\Delta T = (95\°C-10\°C)

Replacing we have that,

\Delta V = (\beta_l-\beta_c)V_0\Delta T

\Delta V = (400*10^{-6}/\°C-51*10^{-6}/\°C)(16L)(95\°C-10\°C)

\Delta V = 0.475L

Therefore there is a loss of fluid in the container of 0.475L

You might be interested in
What type of organization is used in a paragraph that lists similarities between two objects?
alekssr [168]
<span>A. Comparison 

</span>What type of organization is used in a paragraph that lists similarities between two objects? Comparison


NOT:
<span>B. Contrast 
C. Chronological order 
D. Cause and effect</span><span>
</span>
3 0
4 years ago
The speed of a nerve impulse in the human body is about 100 m/s. If you accidentally stub you toe in the dark, estimate the time
vodomira [7]

Answer:

0.02 s

Explanation:

Take the (+x) direction to be up.  

The average velocity v during a time interval Δt is the displacement Δx divided by Δt.  

v=Δx/Δt

 =x_f-x_i/t_f-t_i                 (1)

We assume that your height is 1.6m  

Solving [1]

Δt=Δx/v

  = 0.02 s

4 0
3 years ago
Do not have definite size and always take the shape of their container,
vekshin1
Liquids is the answer
5 0
3 years ago
Read 2 more answers
A point charge q1=+5.00nC is at the fixed position x=0, y=0, z=0. You find that you must do 8.10×10−6J of work to bring a second
Maru [420]

The value of the second charge is 1.2 nC.

<h3>Electric potential</h3>

The work done in moving the charge from infinity to the given position is calculated as follows;

W = Eq₂

E = W/q₂

<h3>Magnitude of second charge</h3>

The magnitude of the second charge is determined by applying Coulomb's law.

E = \frac{kq_2}{r^2} \\\\\frac{kq_2}{r^2} = \frac{W}{q_2} \\\\kq_2^2 = Wr^2\\\\q_2^2 = \frac{Wr^2}{k} \\\\q_2 = \sqrt{\frac{Wr^2}{k} } \\\\q_2 =  \sqrt{\frac{(8.1 \times 10^{-6}) \times (0.04)^2}{9\times 10^9} } \\\\q_2 = 1.2 \times 10^{-9} \ C\\\\q_2 = 1.2 \ nC

Thus, the  value of the second charge is 1.2 nC.

Learn more about electric potential here: brainly.com/question/14306881

7 0
2 years ago
You observe that a mass suspended by a spring takes 0.25 s to make a full oscillation. What is the frequency of this oscillation
Katarina [22]

Answer:

Frequency of oscillation, f = 4 Hz

time period, T = 0.25 s

Angular frequency, \omega = 25.13 rad/s

Given:

Time taken to make one oscillation, T = 0.25 s

Solution:

Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:

f = \frac{1}{T}

f = \frac{1}{0.25}

Frequency of oscillation, f = 4 Hz

The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.

Therefore, time period, T = 0.25 s

Angular frequency of oscillation is given by:

\omega = 2\pi \times f

\omega = 2\pi \times 4

\omega = 25.13 rad/s

5 0
4 years ago
Other questions:
  • A rigid cube (each side is 0.10 m) is filled with water and frozen solid. When water freezes its volume expands about 9%. How mu
    11·1 answer
  • What is the term for movement in a particular direction
    13·1 answer
  • 2. What is the kinetic energy of a 7.26 kg bowling ball that is rolling at a speed of 2 m/s?
    14·2 answers
  • A series RLC circuit with L = 12 mH, C = 3.5 mu or micro FF, and R = 3.3 ohm is driven by a generator with a maximum emf of 115
    9·1 answer
  • Which characterstics do venus and earth share
    5·1 answer
  • Which of the following statements accurately describes the atmospheric patterns that influence local weather?
    13·1 answer
  • How large a band of frequencies does each television broadcasting channel get ?
    12·2 answers
  • What is the motion of an apple when it falls from a tree ? a)Constant b)accelerating c)decelerating d)zero​
    11·1 answer
  • Differentiate amihan and habagat
    8·1 answer
  • Which type of radioactive decay has a positive charge?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!