1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
13

How do we prove the earth is round? What evidence do we have and reasoning?

Physics
2 answers:
Snezhnost [94]3 years ago
8 0

Just like any other scientific conclusion ("theory"), we DON'T say the conclusion first and then go out and look for evidence that supports it. The "scientific" process is to gather up ALL the evidence we possibly can, and THEN figure out a simple description that can explain the evidence. After that, if our description turns out to predict things that we HAVEN'T seen yet but they do turn out to be true, that gives us more confidence that our description is good, and probably true and accurate.

When you live for several years, and you talk to a lot of people, and there's a lot of discussion of day and night, sunrise and sunset, moonrise and moonset, the looks and motions of all the things in the sky seen from different places at different times, how mountains and clouds look during twilight, how ships look when they're coming in and going out, how distant mountains appear, the idea of the Earth as a spinning sphere is the one that can explain them all. No other description can, unless it's hilariously complicated to start with, and you keep making up new kinks and patches every time somebody finds a problem with it.

This is where we were about 2000 years ago.

Since then, telescopes were invented, and we could see that all the OTHER planets are spinning spheres.

And just yesterday, when we started flinging cameras out, turning them around, and taking far-out pictures of the Earth, guess what ! The pictures show that the Earth is spherical. And when we take videos, we see it spinning.

Our theory is looking better all the time.

Jlenok [28]3 years ago
7 0

Answer: Go to the harbor. When a ship sails off toward the horizon, it doesn't just get smaller and smaller until it's not visible anymore. Instead, the hull seems to sink below the horizon first, then the mast. When ships return from sea, the sequence is reversed: First the mast, then the hull, seem to rise over the horizon.

Climbing to a high point will allow you to be able to see farther if you go higher. If the Earth was flat, you'd be able to see the same distance no matter your elevation

You might be interested in
HEEEEEEELLLLLLLPPPPP
Firdavs [7]

Answer:

the less shielding of electrons

6 0
3 years ago
One end of a metal rod is in contact with a thermal reservoir at 745. K, and the other end is in contact with a thermal reservoi
Masteriza [31]

Answer:

a)S_1=-9.65}\ J/K

b)S_2=71.18\ J/K

c) 0 J/K

d)S= 61.53 J/K

Explanation:

Given that

T₁ = 745 K

T₂ = 101 K

Q= 7190 J

a)

The entropy change of reservoir 745 K

S_1=-\dfrac{7190}{745}\ J/K

Negative sign because heat is leaving.

S_1=-9.65}\ J/K

b)

The entropy change of reservoir 101 K

S_2=\dfrac{7190}{101}\ J/K

S_2=71.18\ J/K

c)

The entropy change of the rod will be zero.

d)

The entropy change of the system

S= S₁ + S₂

S = 71.18 - 9.65 J/K

S= 61.53 J/K

3 0
3 years ago
Which indicates that light travels in straight lines?
aleksandr82 [10.1K]

Answer:

A

Explanation:

8 0
3 years ago
Read 2 more answers
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
Other quanto
Alex73 [517]

I'm not sure what you were trying to put here

5 0
3 years ago
Other questions:
  • ¿Existe relación entre la rapidez para realizar trabajo y la velocidad del cuerpo?
    10·1 answer
  • The near point of an eye is 110 cm. A corrective lens is to be used to allow this eye to focus clearly on objects 26.0 cm in fro
    15·1 answer
  • I need help with these two not sure on them
    9·1 answer
  • Element X has five valence electrons, element Y has one valence electron, and element Z has one valence electron. Which two of t
    6·2 answers
  • PLZ HELP do waves transport water with them
    7·1 answer
  • A bag of apples has a weight of 22 newtons. find its approximate mass in kilograms.
    6·1 answer
  • A person travels distance πR along the circumference
    6·2 answers
  • How much energy in Joules (J) would an electric heater that draws 9.5 A when connected to a 120 V supply use if the heater were
    9·1 answer
  • Un jaguar se esconde entre los arbustos acechando a
    15·1 answer
  • ____________________ (is/are) one type of tectonic event captured in geologic maps.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!