The empirical formula for the caproic acid, given the combustion analysis data is C₃H₆O
We'll begin bey obtaining the mass of carbon, hydrogen and oxygen in the compound. This is illustrated below:
How to determine the mass of C
- Mass of CO₂ = 9.78 g
- Molar mass of CO₂ = 44 g/mol
- Molar of C = 12 g/mol
- Mass of C =?
Mass of C = (12 / 44) × 9.78
Mass of C = 2.67 g
How to determine the mass of H
- Mass of H₂O = 20.99 g
- Molar mass of H₂O = 18 g/mol
- Molar of H = 2 × 1 = 2 g/mol
- Mass of H =?
Mass of H = (2 / 18) × 4
Mass of H = 0.44 g
How to determine the mass of O
- Mass of compound = 4.30 g
- Mass of C = 2.67 g
- Mass of H = 0.44 g
- Mass of O =?
Mass of O = (mass of compound) – (mass of C + mass of H)
Mass of O = 4.30 – (2.67 + 0.44)
Mass of O = 1.19 g
<h3>How to determine the empirical formula </h3>
The empirical formula of the compound can be obtained as follow:
- C = 2.67 g
- H = 0.44 g
- O = 1.19 g
- Empirical formula =?
Divide by their molar mass
C = 2.67 / 12 = 0.2225
H = 0.44 / 1 = 0.44
O = 1.19 / 16 = 0.074
Divide by the smallest
C = 0.2225 / 0.074 = 3
H = 0.44 / 0.0744 = 6
O = 0.074 / 0.074 = 1
Thus, the empirical formula of the compound is C₃H₆O
Learn more about empirical formula:
brainly.com/question/9459553
#SPJ1
Answer:
pauli exclusion principle states that no two electrons in the same orbital can have the same spin.
Explanation:
this means you can't have 2 up arrows or 2 down arrows in your box
I believe this process is called fixation
Given what we know, we can confirm that the type of van der Waals interactions that occur between molecules of O2, SCl2, and CH4 in liquids of these substances are the presence of <u>London dispersion forces</u>.
<h3>What are London dispersion forces?</h3>
- They are a force of attraction between atoms.
- They are generated by electrostatic attraction.
- These forces are common between atoms in close proximity and occur often when compounds have a symmetrical distribution of atoms.
- They are generated by the formation of temporary dipoles.
Therefore, given the symmetry of the atoms disposition in these compounds and the temporary dipoles generated by the atoms being in close proximity, we can confirm that the van der Waals forces present in each compound are London dispersion forces.
To learn more about van deer Waals forces visit:
brainly.com/question/13201335?referrer=searchResults
Erosion, ocean waves and weathering.