Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>
Answer:
The acceleration of the both masses is 0.0244 m/s².
Explanation:
Given that,
Mass of one block = 602.0 g
Mass of other block = 717.0 g
Radius = 1.70 cm
Height = 60.6 cm
Time = 7.00 s
Suppose we find the magnitude of the acceleration of the 602.0-g block
We need to calculate the acceleration
Using equation of motion

Where, s = distance
t = time
a = acceleration
Put the value into the formula



Hence, The acceleration of the both masses is 0.0244 m/s².
Answer:
a) 600 meters
b) between 0 and 10 seconds, and between 30 and 40 seconds.
c) the average of the magnitude of the velocity function is 15 m/s
Explanation:
a) In order to find the magnitude of the car's displacement in 40 seconds,we need to find the area under the curve (integral of the depicted velocity function) between 0 and 40 seconds. Since the area is that of a trapezoid, we can calculate it directly from geometry:
![Area \,\,Trapezoid=(\left[B+b]\,(H/2)\\displacement= \left[(40-0)+(30-10)\right] \,(20/2)=600\,\,m](https://tex.z-dn.net/?f=Area%20%5C%2C%5C%2CTrapezoid%3D%28%5Cleft%5BB%2Bb%5D%5C%2C%28H%2F2%29%5C%5Cdisplacement%3D%20%5Cleft%5B%2840-0%29%2B%2830-10%29%5Cright%5D%20%5C%2C%2820%2F2%29%3D600%5C%2C%5C%2Cm)
b) The car is accelerating when the velocity is changing, so we see that the velocity is changing (increasing) between 0 and 10 seconds, and we also see the velocity decreasing between 30 and 40 seconds.
Notice that between 10 and 30 seconds the velocity is constant (doesn't change) of magnitude 20 m/s, so in this section of the trip there is NO acceleration.
c) To calculate the average of a function that is changing over time, we do it through calculus, using the formula for average of a function:

Notice that the limits of integration for our case are 0 and 40 seconds, and that we have already calculated the area under the velocity function (the integral) in step a), so the average velocity becomes:

C.) In this, number of Hydrogen atoms is 4