Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
"(1) a satellite moving around Earth in a circular <span>orbit" is the only option from the list that describes an object in equilibrium, since velocity and gravity are working together to keep the orbit constant. </span>
Answer: 12.67 cm, 8 cm
Explanation:
Given
Normal distance of separation of eyes, d(n) = 6 cm
Distance of separation is your eyes, d(y) = 9.5 cm
Angle created during the jump, θ = 0.75°
To solve this, we use the formula,
θ = d/r, where
θ = angle created during the jump
d = separation between the eyes
r = distance from the object
θ = d/r
0.75 = 9.5 / r
r = 9.5 / 0.75
r = 12.67 cm
θ = d/r
0.75 = 6 / r
r = 6 / 0.75
r = 8 cm
Thus, the object is 12.67 cm far away in your own "unique" eyes, and just 8 cm further away to the normal person eye
It is called a negative nuetron/atom
Answer:
a = 0.7267
, acceleration is positive therefore the speed is increasing
Explanation:
The definition of acceleration is
a = dv / dt
they give us the function of speed
v = - (t-1) sin (t² / 2)
a = - sin (t²/2) - (t-1) cos (t²/2) 2t / 2
a = - sin (t²/2) - t (t-1) cos (t²/2)
the acceleration for t = 4 s
a = - sin (4²/2) - 4 (4-1) cos (4²/2)
a = -sin 8 - 12 cos 8
remember that the angles are in radians
a = 0.7267
the problem does not indicate the units, but to be correct they must be m/s²
We see that the acceleration is positive therefore the speed is increasing