<span>d.rotating counterclockwise and slowing down
This is a matter of understanding the notation and conventions of angular rotations. Positive rotations are counter clockwise and negative rotations are clockwise. An easy way to remember this is the "right hand rule". Make a closed fist with your right hand and have the thumb sticking outwards. If you orient your thumb such that it's pointing in the direction of the positive value along the axis, your fingers will be curled in the positive rotational direction. So in the described scenario, the sphere is rotating in the positive direction (counter clockwise) and decelerating due to the negative angular acceleration. That immediately indicates that options "a", "b", and "e" are wrong since they mention the sphere going clockwise at the beginning. Of the two remaining options "c" and "d", we can discard option "c" since it has the rotation speeding up, and that leaves us with option "d" where the sphere is rotating counter clockwise and slowing down.</span>
Answer:
They all have frequency, wavelength, amplitude, speed and also all transfer energy.
ANSWER
Velocity of the mass reaches zero
EXPLANATION
We want to identify what hapens to a mass attached toa a spring at maximum displacement.
When a mass attached to a spring is at its maximum position of displacement, the direction of the mass begins to change. This implies that the velocity of the mass will reach zero.
Hence, at maximum displacement, the velocity of the mass reaches zero.
It has to due with numbers so I would say the last one!
Answer:
d.
Explanation:
all because the projector is a lens and the magnifying also the microscope