It is B because horn coals are bigger and I read it in a book
It is 0.720 meters cause if the manufacturers of liters contain 2.27 inches it would make a deeply filled of 0.660
Answer:
V = 12.93 L
Explanation:
Given data:
Number of moles = 0.785 mol
Pressure of balloon = 1.5 atm
Temperature = 301 K
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values.
V = nRT/P
V = 0.785 mol × 0.0821 atm.L/ mol.K × 301 K / 1.5 atm
V = 19.4 L /1.5
V = 12.93 L
The postulate of Dalton's atomic theory which is a result of the law of conservation of mass is: Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction.
Arrhenius' Law relates activation energy, Ea, rate constant, K, and temperature, T as per this equation:
K (T) = A * e ^ (-Ea / RT), where R is the universal constant of gases and A is a constant which accounts for collision frequency..
Then you can find the ration between K's at two different temperatures as:
K1 = A * e ^ (-Ea / RT1)
K2 = A* e ^(-Ea / RT2)
=> K1 / K2 = e ^ { (-Ea / RT1) - Ea / RT2) }
=> K1 / K2 = e ^ {(-Ea/ R ) *( 1 / T1 - 1 T2) }
=> K1 / K2 = e^ { (-205,000 j/mol / 8.314 j/mol*k )* ( 1 / 505K - 1/ 485K) }
=> K1 / K2 = e ^ (2.0134494) ≈ 7.5
Answer: 7.5