1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
2 years ago
9

I need help 8th grade science test review will give brainest

Physics
1 answer:
Lelechka [254]2 years ago
5 0
C,B,A
hope this helps
You might be interested in
On Mars a rock falls an unknown vertical distance from a resting position and lands in a crater. If it takes the rock 2.5 second
astra-53 [7]

The Answer To This Question Is B

Hope It Helped

8 0
3 years ago
At the same moment, one rock is dropped and one is thrown downward with an initial velocity of 29m/s from the top of a building
Inessa [10]

Answer:

The thrown rock strike 2.42 seconds earlier.

Explanation:

This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

x=vo*t+\frac{1}{2} a*t^2\\where\\x=distance\\vo=initial velocity\\a=acceleration

So now we have an equation and unkown value.

for the thrown rock

\frac{1}{2}(9.8)*t^2+29*t-300=0

for the dropped rock

\frac{1}{2}(9.8)*t^2+0*t-300=0

solving both equation with the quadratic formula:

\frac{-b\±\sqrt{b^2-4*a*c} }{2*a}

we have:

the thrown rock arrives on t=5.4 sec

the dropped rock arrives on t=7.82 sec

so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)

6 0
3 years ago
Returning once again to our table top example of a horizontal mass on a low-friction surface with m = 0.254 kg and k = 10.0 N/m
Julli [10]

Explanation:

Given that,

Mass = 0.254 kg

Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]

Force = 0.5 N

y = 0.628

We need to calculate the A and d

Using formula of A and d

A=\dfrac{\dfrac{F_{0}}{m}}{\sqrt{(\omega_{0}^2-\omega^{2})^2+y^2\omega^2}}.....(I)

tan d=\dfrac{y\omega}{(\omega^2-\omega^2)}....(II)

Put the value of \omega=0.628\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-0.628)^2+0.628^2\times0.628^2}}

A=0.0198

From equation (II)

tan d=\dfrac{0.628\times0.628}{((10.0^2-0.628)^2)}

d=0.0023

Put the value of \omega=3.14\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-3.14)^2+0.628^2\times3.14^2}}

A=0.0203

From equation (II)

tan d=\dfrac{0.628\times3.14}{((10.0^2-3.14)^2)}

d=0.0120

Put the value of \omega=6.28\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-6.28)^2+0.628^2\times6.28^2}}

A=0.0209

From equation (II)

tan d=\dfrac{0.628\times6.28}{((10.0^2-6.28)^2)}

d=0.0257

Put the value of \omega=9.42\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-9.42)^2+0.628^2\times9.42^2}}

A=0.0217

From equation (II)

tan d=\dfrac{0.628\times9.42}{((10.0^2-9.42)^2)}

d=0.0413

Hence, This is the required solution.

5 0
3 years ago
A scene in a movie has a stuntman falling through a floor onto a bed in the room below. The plan is to have the actor fall on hi
tekilochka [14]

Answer:

The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg

Explanation:

Hi there!

Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:

PE = EPE

m · g · h = 1/2 k · x²

Where:

m = mass.

g = acceleration due to gravity.

h = height.

k = spring constant.

x = compression distance

The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:

EPE =1/2 k · x²

EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J

Then, using the equation of gravitational potential energy:

PE = m · g · h =  541.2 J

m =  541.2 J/ g · h

m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)

m = 16.6 kg

The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.

6 0
3 years ago
parallel-plate air capacitor is made from two plates 0.070 m square, spaced 6.3 mm apart. What must the potential difference bet
Rom4ik [11]

Answer:

V = 576 V

Explanation:

Given:

- The area of the two plates A = 0.070 m^2

- The space between the two plates d = 6.3 mm

- Te energy density u = 0.037 J /m^3

Find:

- What must the potential difference between the plates V?

Solution:

- The energy density of the capacitor with capacitance C and potential difference V is given as:

                               u = 0.5*ε*E^2

- Where the Electric field strength E between capacitor plates is given by:

                               E = V / d

Hence,

                               u = 0.5*ε*(V/d)^2

Where, ε = 8.854 * 10^-12

                               V^2 = 2*u*d^2 / ε

                               V = d*sqrt ( 2*u / ε )

Plug in values:

                               V = 0.0063*sqrt ( 2 * 0.037 / (8.854 * 10^-12) )

                               V = 576 V

4 0
3 years ago
Other questions:
  • A satellite orbits earth at 800 m from the earth's center. Gravity at this location is 6.2 m/s^2. What is the velocity of the sa
    15·1 answer
  • A bicycle wheel rotates at a constant 25 rev/min. What is true about its angular acceleration?
    6·1 answer
  • Choose the 200 kg refrigerator. Set the applied force to 400 N (to the right). Be sure friction is turned off.What is the net fo
    7·2 answers
  • (a) A small object with mass 3.75 kg moves counterclockwise with constant speed 1.55 rad/s in a circle of radius 2.55 m centered
    13·1 answer
  • The passengers in a roller coaster car feel 50% heavier than their true weight as the car goes through a dip with a 20 m radius
    9·2 answers
  • A 4-m long wire with a mass of 70 g is under tension. A transverse wave for which the frequency is 300 Hz, the wavelength is 0.6
    7·1 answer
  • A runner runs the 100 meter dash in 16.6 seconds. What is their average speed? (in meters per second) SOMEBODY PLEASE HELP ME!!!
    7·1 answer
  • A proton is 0.9 meters away from a 1.4 C charge. What is the magnitude of the electric force between the proton and the charge
    5·2 answers
  • What is the meaning of painting
    7·2 answers
  • Another 100 points time is running out this has to be correct! Correct answer gets brainiest! Hurry!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!