1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
3 years ago
10

How do the early efforts of women during the suffrage movement compare to the later years

Physics
1 answer:
Nat2105 [25]3 years ago
7 0

The idea that women's liberation is also men's liberation arouses the awakening of feminism. In 1966 Frieden and other feminists founded the National Organization for Women. Then other women's organizations for equal rights were formed in the United States and Western Europe. These organizations sought to overturn discriminatory laws and practices that forced women to hold down their status, such as discrimination in matters of contract and property ownership, employment and wages, the treatment of wage income, and issues relating to sex and child-bearing. The growing feminist movement more broadly seeks to change social stereotypes that women are more vulnerable, passive and dependent, less rational and emotionally reactive than men. Feminism strives for greater freedom for women in the workplace and makes them financially and psychologically independent of men, if they wish. Feminists criticized society's general emphasis on women as objects of sexual desire and sought to raise women's awareness and expand their opportunities in order to achieve equality with men. Another objective of feminism is to promote women's participation in all areas of political decision-making and social life.

You might be interested in
Janice has just measured the density of an object. Which value is possible? (Density: D = )
babunello [35]
It is 6 g/cm3 because density cannot be negative, and it is not speed in which the unit would be m/s.
6 0
3 years ago
Read 2 more answers
A girl is shown at position A on a swing when the seat is directly below the support bar. The seat is then at height A as shown
MrRa [10]

Answer:

<u></u>

  • <u>1. The potential energy of the swing is the greatest at the position B.</u>

  • <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>

Explanation:

Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.

The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>

Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,

7 0
3 years ago
Read 2 more answers
WILL GIVE BRAINLIEST PLZ HELP REALLY URGENT
ozzi
D.) 5kg

This is a trick question. The mass of an object does not change based in location. However the weight of an object does change, this is because Weight = Mass × Gravity. Also mass is measured in kilograms and so the answer is 5 kg. So if you ever want to lose weight just go to the moon!
3 0
4 years ago
Gravity and Electromagnetic force
Sladkaya [172]
Differences between gravitational and electromagnetic radiation

So far we have been emphasizing how, at a fundamental level, the generation and propagation of gravitational and electromagnetic radiation are basically quite similar. This is a major point in demystifying gravitational waves. But, on a more practical level, gravitational and electromagnetic waves are quite different: we see and use electromagnetic waves every day, while we have yet to make a confirmed direct detection of gravitational waves (which is why they seemed so mysterious in the first place).

There are two principal differences between gravity and electromagnetism, each with its own set of consequences for the nature and information content of its radiation, as described below.

<span><span><span>Gravity is a weak force, but has only one sign of charge.
Electromagnetism is much stronger, but comes in two opposing signs of charge.</span>
This is the most significant difference between gravity and electromagnetism, and is the main reason why we perceive these two phenomena so differently. It has several immediate consequences:<span>Significant gravitational fields are generated by accumulating bulk concentrations of matter. Electromagnetic fields are generated by slight imbalances caused by small (often microscopic) separations of charge.<span>Gravitational waves, similarly, are generated by the bulk motion of large masses, and will have wavelengths much longer than the objects themselves. Electromagnetic waves, meanwhile, are typically generated by small movements of charge pairs within objects, and have wavelengths much smaller than the objects themselves.</span><span>Gravitational waves are weakly interacting, making them extraordinarily difficult to detect; at the same time, they can travel unhindered through intervening matter of any density or composition. Electromagnetic waves are strongly interacting with normal matter, making them easy to detect; but they are readily absorbed or scattered by intervening matter. 

</span><span>Gravitational waves give holistic, sound-like information about the overall motions and vibrations of objects. Electromagnetic waves give images representing the aggregate properties of microscopic charges at the surfaces of objects.</span></span>
</span><span><span>Gravitational charge is equivalent to inertia.
Electromagnetic charge is unrelated to inertia. </span>
This is the more fundamental difference between electromagnetism and gravity, and influences many of the details of gravitational radiation, but in itself is not responsible for the dramatic differences in how we perceive these two types of radiation. Most of the consequences of the principle of equivalence in gravity have already be discussed, such as:<span><span>The fundamental field of gravity is a gravitational force gradient (or tidal) field, and requires an apparatus spread out over some distance in order to detect it. The fundamental field in electromagnetism is an electric force field, which can be felt by individual charges within an apparatus.</span><span>The dominant mode of gravitational radiation is quadrupolar: it has a quadratic dependence on the positions of the generating charges, and causes a relative "shearing" of the positions of receiving charges. The dominant mode of electromagnetic radiation is dipolar: it has a linear dependence on the positions of the generating charges, and creates a relative translation of the positions of receiving charges.</span></span></span></span>
6 0
4 years ago
Read 2 more answers
2. What is the difference between analytical response and concentration?
Anton [14]
An example helps clarify the difference between an analysis, a deter- mination and ... departments analyze samples of water to determine the concentration of ... moles of Cu2+, and cylinder 2 contains 20 mL, or 2.0 × 10.
5 0
3 years ago
Other questions:
  • A 3.00 cm diameter coin rolls up a 30.0 degree incline plane. The coin starts with an initial angular speed of 60.0 rad/s in a s
    14·1 answer
  • I really need help.
    6·1 answer
  • Describe a situation where you add heat to a substance or material but there is no change in temperature. What does this look li
    13·1 answer
  • The combustion of a single molecule of methane produces about 10 ev of energy. a methane molecule has a mass of 16 amu. the fiss
    13·1 answer
  • An astronaut of mass m in a spacecraft experiences a gravitational force F=mg when stationary on the launchpad.
    15·1 answer
  • How much time passes when an object travels at a constant speed of 17 m/s over a distance of 323 m? Identify Variables, write fo
    13·1 answer
  • A ball is thrown upward from the ground with an initial speed of 19.2 m/s; at the same instant, another ball is dropped from a b
    9·1 answer
  • Which statement describes how nuclear power generation systems work?
    11·1 answer
  • PLEASE HELP ASAP! WILL GIVE BRANLIEST! Pay attention to what happens to the things around you as you go about your day. Describe
    5·1 answer
  • What kind of employment is regarded as national level employment?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!