Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
1 atmospheric pressure = 760.0 mm Hg
Thus 580 mm Hg = (580 mm Hg/(760 mm Hg/atm))
= 0.763 atm
The pressure at 100 meters below the surface of sea water with a density of 1150kg is 145.96 psi.
Answer:

Explanation:
When the block is displaced by x units
F= spring force
two springs are connected parallel

Writing Newtons second law, F = ma


a= x" ( differentiating x w.r.t time twice)

this the standard form of equation of oscillation spring mass system
This is the differential equation, x'' means that double differentiation of x , i.e, x'' is acceleration
since, Period 
therefore,

Answer:
W= 4.4 J
Explanation
Elastic potential energy theory
If we have a spring of constant K to which a force F that produces a Δx deformation is applied, we apply Hooke's law:
F=K*x Formula (1): The force F applied to the spring is proportional to the deformation x of the spring.
As the force is variable to calculate the work we define an average force
Formula (2)
Ff: final force
Fi: initial force
The work done on the spring is :
W = Fa*Δx
Fa : average force
Δx : displacement
:Formula (3)
: final deformation
:initial deformation
Problem development
We calculate Ff and Fi , applying formula (1) :


We calculate average force applying formula (2):

We calculate the work done on the spring applying formula (3) : :
W= 11N*(0.7m-0.3m) = 11N*0.4m=4.4 N*m = 4.4 Joule = 4.4 J
Work done in stages
Work is the change of elastic potential energy (ΔEp)
W=ΔEp
ΔEp= Epf-Epi
Epf= final potential energy
Epi=initial potential energy




W=ΔEp= 5.39 J-0.99 J = 4.4J
: