Answer:
Net force, F = 44.66 N
Explanation:
It is given by,
Initial velocity of the person, u = 0
Final velocity of the person, v = 0.68 m/s
Distance, s = 0.428 m
Combined mass of the person and the kayak, m = 82.7 kg
We need to find the net force acting on the kayak i.e.
F = ma...........(1)
Firstly, we will calculate the value of "a" from third equation of motion as :




Put the value of a in equation (1) as :

F = 44.66 N
So, the net force acting on the kayak is 44.66 N. Hence, this is the required solution.
Answer:

Explanation:
We have series and parallel combination of two resisters
and
.
Series combination is
and Parallel is
Now dividing series equivalent resistance by parallel resistance gives us
.
Note! series Combination is simply superposition of two elements (resisters in this case ) in a circuit.
Answer:
1.4s
Explanation:
Given parameters:
Mass of ball = 2kg
Force = 8N
Time = 0.35s
Unknown:
Change in velocity = ?
Solution:
To solve this problem, we use the expression obtained from Newton's second law of motion which is shown below:
Ft = m(v - u)
So;
Ft = m Δv
F is the force
t is the time
m is the mass
Δv is the change in velocity
8 x 0.35 = 2 x Δv
Δv = 1.4s
Answer:
Correct, is there another part to the question?
Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have

