The initial velocity of the ball is 55.125 m/s.
<h3>Initial velocity of the ball</h3>
The initial velocity of the ball is calculated as follows;
During upward motion
h = vi - ¹/₂gt²
h = vi - 0.5(9.8)(3²)
h = vi - 44.1 ----------------- (1)
During downward motion
h = vi + ¹/₂gt²
h = 0 + 0.5(9.8)(1.5)²
h = 11.025 ----------- (2)
solve (1) and (2) together, to determine the initial velocity of the ball
11.025 = vi - 44.1
vi = 11.025 + 44.1
vi = 55.125 m/s
Thus, the initial velocity of the ball is 55.125 m/s.
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
light waves. the other waves like gamma rays or infrared waves or radio waves are all not visible to the eye. light is the only thing out of those you can see.
Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.
It involves electrons.
The cathode is the electrode where electron deficient ions move to.
While the anode is electrode where electron excess ions move to.
So the relationship between Cathode and Anode involves electrons.
C.
Explanation:
The distance that a car travels down the interstate can be calculated with the following formula:
Distance = Speed x Time
(A) Speed of the car, v = 70 miles per hour = 31.29 m/s
Time, d = 6 hours = 21600 s
Distance = Speed x Time
D = 31.29 m/s × 21600 s
D = 675864 meters
or

(b) Time, d = 10 hours = 36000 s
Distance = Speed x Time
D = 31.29 m/s × 36000 s
D = 1126440 meters
or

(c) Time, d = 15 hours = 54000 s
Distance = Speed x Time
D = 31.29 m/s × 54000 s
D = 1689660 meters
or

Hence, this is the required solution.