Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer:
BC and DE
Explanation:
In the given figure, the velocity time graph is shown. We know that the area under v-t curve gives the displacement of the particle.
Area under AB, 
Area under BC, 
Area under CD, 
Area under DE, 
Area under EF, 
So, form above calculations it is clear that, during BC and DE undergo equal displacement. Hence, the correct option is (c) "BC and DE = 4 meters".
The answer is 24N. Since the body is moving with constant velocity all the forces must balance (equal & opposite)
Answer:
B
Explanation:
You always want to test as many samples as possible