If we consider a combustion reaction of Methane:
The balanced equation is:
CH4 + 2O2 ---> 2H2O + CO2
The rate of appearance of H2O is rH2O, rate of disappearance of O2 is -rO2
(rH2O)^2 = (-rO2)^2
rH2O = -rO2
0.0760 m
do this by:
finding the moles of NaOH which will be <span>5.702 E -3 m
</span>
next find the moles of H3PO4 which will be <span>1.90 E -3 m</span><span>
calulcate </span>25 ml sample molarity = 0.07603 m, just put 0.0760<span>
</span>
Answer:
Its the first second and the fourth
A metallic conductor moving at a constant speed in a magnetic field may develop a voltage across it. This is an example of Motional emf
Hope this helps!
Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:

Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:

It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:

It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!