Explanation:
The speed of seismic waves is affected by the density of the underlying rock.
Seismic waves are elastic waves that transmits elastic energy from one point to the other.
These waves generally produced during an earthquake.
- The higher the density of rock bodies, the faster the wave travels.
- Rocks that are well packed with little to no void have a higher seismic velocity.
- Where density of rock is low, the speed is also low
Answer:
Molality = 7.5 mol/kg
Explanation:
Given data:
Mass of NH₄Cl = 6.30 g
Mass of water = 15.7 g (15.7/1000 =0.016 kg)
Molality = ?
Solution:
Formula of molality:
Molality = Moles of solute / mass of solvent in gram
Now we will first calculate the number of moles of solute( NH₄Cl )
Number of moles = mass/ molar mass
Molar mass of NH₄Cl = 53.491 g/mol
Number of moles = 6.30 g/ 53.491 g/mol
Number of moles = 0.12 mol
Now we will calculate the molality.
Molality = Moles of solute / mass of solvent in gram
Molality = 0.12 mol / 0.016 kg
Molality = 7.5 m
or (m=mol/kg)
Molality = 7.5 mol/kg
Answer:
Pelting point.
Explanation:
Freezing point is the same is the melting point.
Weathering of the rock and sedimentation are decomposition processes. Through time, the minerals in the rocks soften due to pressure and heat. So, they crumble down and reduce in terms of size. Once they do, they become sand or part of the soil. So, the answer is A.
For a p type of semiconductor we need a dopant which is from 13th group in periodic table
Al , B, Ga, In Tl
So the correct element will be In : Indium
The other elements belongs to 15th group and hence will give n type semiconductor