Answer:
D
Explanation:
I believe the answer is D because atoms are always seeking to fill up their outer electron shell/valence shell and want to gain a full octet.
Answer:
The answer is 2.20 M
Explanation:
This is because ammonia has a pH of 11.8 and if you take 14-11.8 it equals 2.2 so the answer is 2.20 M
Answer:
To have the electronic configuration equal to 1s²2s²2p⁶3s²3p⁶4s²3d⁷, the chemical element must have an electrical charge equal to 27, that is, it must have 27 electrons, such as Cobalt (Co), for example.
Explanation:
The electronic configuration shown in the question above is known as the Linus Pauling distribution and represents the energy sub-levels that an electrically charged atom can have in relation to the amount of electrons it has.
The layers sub-levels are presented in the following order 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹º 4p⁶ 5s² 4d¹º 5p⁶ 6s² 4f14 5d¹º 6p⁶ 7s² 5f14 6d¹º 7p⁶. Where the small numbers represent the number of electrons in each sub-level and the large numbers represent the layers of electronic distribution.
Accordingly, we can see that an atom that has the configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁷ has 27 electrons, like Cobalt.
Be kind yk? tell him have some respect for your relationship and if he can't then cut him off completely
Answer:
Chlorine
Explanation:
Chlorine has an atomic number of 17 and a configuration of 2, 8, 7. In the outermost shell, it has 7 seven electrons which means that it needs just one more electron to attain an octet configuration in that shell. Therefore it's can react quickly with any nearby nucleophile.