Answer:clinical psychology
Explanation:
The largest area of specialization in psychology is clinical psychology
Answer:
8,809.024m
Explanation:
Displacement , y = (gt^2/2
)
g = 9.8 m/s^2
t = 42.4s
y = (9.8 (42.4*42.4)) / 2
y = 8,809.024m
The correct option is
a fire
In fact, a fire is a conversion of chemical energy (contained in the molecules of the initial substances) into thermal energy (the heat released by the fire itself), therefore this is an example of energy changing from one form to another. All the other objects, instead, do not represent any form of energy conversion.
Answer:
<u>Acceleration is 2 m/s² </u>
<u>Distance</u><u> </u><u>is</u><u> </u><u>1</u><u>0</u><u>0</u><u> </u><u>m</u>
Explanation:
From definition of acceleration, Acceleration is the rate of change in velocity.
• Simplifying the definition, or modifying it;

• Let's formulate symbols:

- a is acceleration
- v is final velocity, v = 20 m/s
- u is initial velocity, u = 0 m/s [ at rest ]
- t is time, t = 10 seconds

Distance = ut + ½at²
Distance = (0 × 10) + (½ × 2 × 10²)
Distance = 0 + 10²
Distance = 100 meters
Recall the definitions of
• average velocity:
v[ave] = ∆x/∆t = (x[final] - x[initial])/t
Take the initial position to be the origin, so x[initial] = 0, and we simply write x[final] = s. So
v[ave] = s/t
• average acceleration:
a[ave] = ∆v/∆t = (v[final] - v[initial])/t
Assume acceleration is constant (a[ave] = a). Let v[initial] = u and v[final] = v, so that
a = (v - u)/t
Under constant acceleration, the average velocity is also given by
v[ave] = (v[final] + v[initial])/2 = (v + u)/2
Then
v[ave] = s/t = (v + u)/2 ⇒ s = (v + u) t/2
and
a = (v - u)/t ⇒ v = u + at
so that
s = ((u + at) + u) t/2
s = (2u + at) t/2
s = ut + 1/2 at²