Given Information:
KEa = 9520 eV
KEb = 7060 eV
Electric potential = Va = -55 V
Electric potential = Vb = +27 V
Required Information:
Charge of the particle = q = ?
Answer:
Charge of the particle = +4.8x10⁻¹⁸ C
Explanation:
From the law of conservation of energy, we have
ΔKE = -qΔV
KEb - KEa = -q(Vb - Va)
-q = KEb - KEa/Vb - Va
-q = 7060 - 9520/27 - (-55)
-q = 7060 - 9520/27 + 55
-q = -2460/82
minus sign cancels out
q = 2460/82
Convert eV into Joules by multiplying it with 1.60x10⁻¹⁹
q = 2460(1.60x10⁻¹⁹)/82
q = +4.8x10⁻¹⁸ C
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Answer:
Explanation:
Given that
Force constant k=8.6N/m
Weight =64g=64/1000=0.064kg
Extension is 45mm=45/1000= 0.045m
It will have it highest spend when the Potential energy is zero
Therefore energy in spring =change in kinetic energy
Ux=∆K.e
½ke² = ½mVf² — ½mVi²
Initial velocity is 0, Vi=0m/s
½ke² = ½mVf²
½ ×8.6 × 0.045² = ½ ×0.064 ×Vf²
0.0087075 = 0.032 Vf²
Then, Vf² = 0.0087075/0.032
Vf² = 0.2721
Vf=√0.2721
Vf= 0.522m/s
The time it will have this maximum velocity?
Using equation of motion
Vf= Vi + gr
0.522= 0+9.81t
t=0.522/9.81
t= 0.0532sec
t= 53.2 milliseconds
The world’s supply of fossil fuels will dwindle slowly until a replacement source is found that provides the same power.
bc some day we will actually run out of it and find sth that gives power