Answer:
Crumple zones are designed to absorb and redistribute the force of a collision. ... Also known as a crush zone, crumple zones are areas of a vehicle that are designed to deform and crumple in a collision. This absorbs some of the energy of the impact, preventing it from being transmitted to the occupants.
Answer:
Professional education as a science has been defined as a field of educational science that studies the growth of a person into a profession and the related problems. It refers to organized education aimed at the knowledge and skills needed in the profession and working life, as well as growing into active citizenship and membership of society. Professional education as a discipline studies vocational training, skills and learning related to the profession and working life.
It enables young people and adults to pursue goal-oriented learning with the aim of acquiring and developing the necessary skills in the profession and creating the conditions for independent professional activity and continuous development in the profession.
Answer:
-22/15
Explanation:
the least common denominator is 15 so first you multiply -2/3 by 5 in both the numerator and denominator making it -10/15
Then you do the same to -4/5 except you multiply the numerator and denominator by 3 giving you -12/15
If you add -10/15+ -12/15 you get -22/15
Answer:
Time - taken = 2.5 s
deceleration= -8 m/s²
Solution:
Given:
speed, v = 8 m/s
distance, d = 20m
To Find:
deacceleration = ?
As we know speed is defined as
v = d/t
plugging in the values
t = 20/ 8
t = 2.5s
Now from deceleration formula
a = - v/ t
a = - 20/ 2.5
a = - 8 m/s²
Thus, the time taken and acceleration is 2.5 s and -8 m/s²
respectively.
Learn more about deceleration here:
brainly.com/question/13354629
#SPJ4
Answer:
0.83 m/s
Explanation:
FIrst of all, we have to find the time of flight, i.e. the time the baseball needs to reach the ground. This can be done by using the equation for the vertical motion:

where
h is the initial height
u = 0 is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
t is the time
Substituting h = 1.8 m and solving for t,

We know that the horizontal distance travelled by the ball is
d = 0.5 m
Therefore, we can find the horizontal velocity (which is constant during the whole motion):
