A carbon which is attached to four different atoms or group of atoms with different environment is called as
Chiral Carbon or
Asymmetric Carbon.
Non-<span>
superimposable:
</span> The mirror image (molecule) of chiral carbon cotaining compounds are Non.Superimposable on each other. They are called enantiomers of each other.
Polarized Light and Chiral Carbon: When a polarized light is allowed to fall on either enantiomer of chiral compound, it is rotated other clockwise or anti-clockwise.
Examples: Below are three axamples of compounds containing chiral carbon.
The final volume of the methane gas in the container is 6.67 L.
The given parameters;
- <em>initial volume of gas in the container, V₁ = 2.65 L</em>
- <em>initial number of moles of gas, n₁ = 0.12 mol</em>
- <em>additional concentration, n = 0.182 mol</em>
The total number of moles of gas in the container is calculated as follows;

The final volume of gas in the container is calculated as follows;

Thus, the final volume of the methane gas in the container is 6.67 L.
Learn more here:brainly.com/question/21912477
Answer : The correct option is, (D) 100 times the original content.
Explanation :
As we are given the pH of the solution change. Now we have to calculate the ratio of the hydronium ion concentration at pH = 5 and pH = 3
As we know that,
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
The hydronium ion concentration at pH = 5.
![5=-\log [H_3O^+]](https://tex.z-dn.net/?f=5%3D-%5Clog%20%5BH_3O%5E%2B%5D)
..............(1)
The hydronium ion concentration at pH = 3.
![3=-\log [H_3O^+]](https://tex.z-dn.net/?f=3%3D-%5Clog%20%5BH_3O%5E%2B%5D)
................(2)
By dividing the equation 1 and 2 we get the ratio of the hydronium ion concentration.
![\frac{[H_3O^+]_{original}}{[H_3O^+]_{final}}=\frac{1\times 10^{-5}}{1\times 10^{-3}}=\frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_3O%5E%2B%5D_%7Boriginal%7D%7D%7B%5BH_3O%5E%2B%5D_%7Bfinal%7D%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-5%7D%7D%7B1%5Ctimes%2010%5E%7B-3%7D%7D%3D%5Cfrac%7B1%7D%7B100%7D)
![100\times [H_3O^+]_{original}=[H_3O^+]_{final}](https://tex.z-dn.net/?f=100%5Ctimes%20%5BH_3O%5E%2B%5D_%7Boriginal%7D%3D%5BH_3O%5E%2B%5D_%7Bfinal%7D)
From this we conclude that when the pH of a solution changes from a pH of 5 to a pH of 3, the hydronium ion concentration is 100 times the original content.
Hence, the correct option is, (D) 100 times the original content.
2 atome nitrogen , 1 is correct
Answer:
C.
Explanation:
You have to just know this. Their is really no other explanation.
- Hope that helps! Please let me know if you need further explanation.