To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volume V the ratio of the sphere will be
.
We know that the surface area and volume of the sphere is given by:

Therefore, the ratio between the surface area and the volume for the sphere will be:

Equating the volume to the constant c, we will find the value of
.

Substituting the value of r in the ration between surface area and volume, we get:

Calculating the constants, we get:

Hence, the ration between surface area and volume is 
To learn more about surface area and volume of sphere, refer to:
brainly.com/question/4387241
#SPJ4
The slope of a speed-time graph is the acceleration represented by the graph.
All other parts of this question refer to a lab experiment or exercise
where I was not present, but Zeesam16 was. Therefore I have no data
with which to answer the rest of the question, and hope that Zeesam can
handle it.
Answer:
It is another machine that helps the main machine. Hope that helps!
Answer:

Explanation:
Impulse-Momentum relation:


We solve the equations in order to find the braking force:

Answer:
(a) Magnitude of static friction force is 109 N
(b) Minimum possible value of static friction is 0.356
Solution:
As per the question;
Horizontal force exerted by the girl, F = 109 N
Mass of the crate, m = 31.2 kg
Now,
(a) To calculate the magnitude of static friction force:
Since, the crate is at rest, the forces on the crate are balanced and thus the horizontal force is equal to the frictional force, f:
F = f = 109 N
(b) The maximum possible force of friction between the floor and the crate is given by:

where
N = Normal reaction = mg
Thus

For the crate to remain at rest, The force exerted on the crate must be less than or equal to the maximum force of friction.



