Answer:
c. detecting the gravitational effect of an orbiting planet (The Wobble"") by looking for the Doppler shifts in the star's spectrum
Explanation:
In a solar system the mass of the star and planets affect each other's orbital movements. The center of gravity of a star and a planet is inside the star. This causes the star to be closer and farther from the Earth at different times. Due to this wobble the star appears to be red shifted when it is farther and blue shifted when it is closer.
When the mass of the planet is high, like a hot Jupiter it causes more wobble i.e., change in radial velocity. This makes it easier to detect the planet. The earliest hot Jupiter found by this method is the planet 51 Pegasi b.
Answer:
minimum mass of the neutron star = 1.624 × 10^30 kg
Explanation:
For a material to remain on the surface of a rapidly rotating neuron star, the magnitude oĺf the gravitational acceleration on the material must be equal to the magnitude of the centripetal acceleration of the rotating neuron star.
This can be represented by the explanations in the attached document.
minimum mass of the neutron star = 1.624 × 10^30 kg
Answer:
A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The word galaxy is derived from the Greek galaxias, literally "milky", a reference to the Milky Way.
Explanation:
Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec