Answer:
41.17g
Explanation:
We are given the following parameters for Flourine gas(F2).
Volume = 5.00L
Pressure = 4.00× 10³mmHG
Temperature =23°c
The formula we would be applying is Ideal gas law
PV = nRT
Step 1
We find the number of moles of Flourine gas present.
T = 23°C
Converting to Kelvin
= °C + 273k
= 23°C + 273k
= 296k
V = Volume = 5.00L
R = 0.08206L.atm/mol.K
P = Pressure (in atm)
In the question, the pressure is given as 4.00 × 10³mmHg
Converting to atm(atmosphere)
1 mmHg = 0.00131579atm
4.00 × 10³ =
Cross Multiply
4.00 × 10³ × 0.00131579atm
= 5.263159 atm
The formula for number of moles =
n = PV/RT
n = 5.263159 atm × 5.00L/0.08206L.atm/mol.K × 296K
n = 1.0834112811moles
Step 2
We calculate the mass of Flourine gas
The molar mass of Flourine gas =
F2 = 19 × 2
= 38 g/mol
Mass of Flourine gas = Molar mass of Flourine gas × No of moles
Mass = 38g/mol × 1.0834112811moles
41.169628682grams
Approximately = 41.17 grams.
Sugar. (We need a design tech section)
Yes because some work harder than others to get their credit for developing the periodic table
Answer:
A.
Explanation:
Squeezing the bottle creates negative pressure inside the bottle because of the plastic's elasticity that will hasten the extraction of the carbon dioxide from the soda.
Answer:
NH4Br + AgNO3 —> AgBr + NH4NO3
Explanation:
When ammonium bromide and silver(I) nitrate react, the following are obtained as shown below:
NH4Br(aq) + AgNO3(aq) —>
In solution, NH4Br(aq) and AgNO3(aq) will dissociate as follow:
NH4Br(aq) —> NH4+(aq) + Br-(aq)
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
The double displacement reaction will occur as follow:
NH4+(aq) + Br-(aq) + Ag+(aq) + NO3-(aq) —> Ag+(aq) + Br-(aq) + NH4+(aq) + NO3-(aq)
NH4Br(aq) + AgNO3(aq) —> AgBr(s) + NH4NO3(aq)