<h3>
Answer:</h3>
150 g Si
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 3.2 × 10²⁴ atoms Si
[Solve] grams Si
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Si - 28.09 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. Instructed to round to 2 sig figs.</em>
149.266 g Si ≈ 150 g Si
B. increase; decrease or are absent
In a liquid, the particles move around more than a solid, but way less than in a gas because there isn't that much space between particles.
When matter is a gas, the particles tend to move in a larger area and they tend to get very far away from each other. So, the space between particles increase and the attraction forces decrease.
Answer:

Explanation:
Hello!
In this case, since the combustion of the hamburger released 335.4 kcal of energy and that energy is received by the calorimeter, we can write:

And the heat of the calorimeter is written in terms of the temperature change and the calorimeter constant:

Thus, given the released heat by the hamburger due to its combustion and the temperature change, Cv for the calorimeter turns out:

Best regards!