Remember that density refers to the "mass per unit volume" of an object.
So, if an object had a mass of 100 grams and a volume of 100 milliliters, the density would be 100 grams / 100 ml.
In the question, water on the surface of the scale would add weight, so the mass of the object that you're weighing would appear to be heavier than it really is. If that happens, you'll incorrectly assume that the density is GREATER than it really is
As an example, suppose that there was 5 ml of water on the surface of the scale. Water has a density of 1 gram per milliliter (1 g/ml) so the water would add 5 grams to the object's weight. If we use the example above, the mass of the object would seem to be 105 grams, rather than 100 grams. So, you would calculate:
density = mass / volume
density = 105 grams / 100 ml
density = 1.05 g/ml
The effect on density would be that it would erroneously appear to be greater
Hope this helps!
Good luck
The average atomic mass of your mixture is 1.03 u
.
The average atomic mass of H is the weighted average of the atomic masses of its isotopes.
We multiply the atomic mass of each isotope by a number representing its relative importance (i.e., its % abundance).
Thus,
0.99 × 1.01 u = 0.998 u
0.002 × 2.01 u = 0.004 u
0.008 × 3.02 u = <u>0.024 u</u>
TOTAL = 1.03 u
Answer:
B. CO₂ and H₂O.
Explanation:
When any organic substance undergoes complete combustion, it produces carbon dioxide (CO₂) and water (H₂O).
In the case of methane, the balanced reaction is:
With the above information in mind the correct answer is option B. CO₂ and H₂O.
When the combustion is incomplete, carbon monoxide (CO) is produced as well.
The answer is na sodium, bromine