<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C
Answer:the CO2 molecule has an excess of electron
Answer:
False
Explanation:
Amplitude does not affect wavelength
An earthquake happens when tectonic plates move against each other. A oceanic and a continental tectonic plates might move against each other. When that happens water is pushed upwards and it creates ripples that then move towards land. It's like throwing a rock in water but a lot bigger. I can't post external links on Brainly but you can find more information about tsunami's on Google
Answer:
1. smaller. 2. smaller. 3. greater
Explanation:
1. H−O−H angle is 104.45 and H−C−H angle is 109.5
2. O−S−O angle is 119 and F−B−F angle is 120
3. The F−S−F bond angle in SF₆ is 90 and F−Br−F bond angle in BrF₅ is 84.8