To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>
Answer:
d. epicentral distance scale
Explanation:
The depth of focus from the epicenter, called as Focal Depth, is an important parameter in determining the damaging potential of an earthquake. Most of the damaging earthquakes have shallow focus with focal depths less than about 70km. Distance from epicenter to any point of interest is called epicentral distance
Explanation:
There are three forces on the bicycle:
Reaction force Rp pushing up at P,
Reaction force Rq pushing up at Q,
Weight force mg pulling down at O.
There are four equations you can write: sum of the forces in the y direction, sum of the moments at P, sum of the moments at Q, and sum of the moments at O.
Sum of the forces in the y direction:
Rp + Rq − (15)(9.8) = 0
Rp + Rq − 147 = 0
Sum of the moments at P:
(15)(9.8)(0.30) − Rq(1) = 0
44.1 − Rq = 0
Sum of the moments at Q:
Rp(1) − (15)(9.8)(0.70) = 0
Rp − 102.9 = 0
Sum of the moments at O:
Rp(0.30) − Rq(0.70) = 0
0.3 Rp − 0.7 Rq = 0
Any combination of these equations will work.
The sun was shining on the sand heating it up causing ot to become hot