1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
2 years ago
8

A 3.91 kg cart is moving at 5.7 m/s when it collides with a 4 kg cart which was at rest. They collide and stick together.

Physics
1 answer:
Nesterboy [21]2 years ago
6 0

Answer:

<em>The velocity after the collision is 2.82 m/s</em>

Explanation:

<u>Law Of Conservation Of Linear Momentum </u>

It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is  

P=mv.  

If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

P=m_1v_1+m_2v_2

If a collision occurs and the velocities change to v', the final momentum is:

P'=m_1v'_1+m_2v'_2

Since the total momentum is conserved, then:

P = P'

Or, equivalently:

m_1v_1+m_2v_2=m_1v'_1+m_2v'_2

If both masses stick together after the collision at a common speed v', then:

m_1v_1+m_2v_2=(m_1+m_2)v'

The common velocity after this situation is:

\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.

After the collision, both cars stick together. Let's compute the common speed after that:

\displaystyle v'=\frac{3.91*5.7+4*0}{3.91+4}

\displaystyle v'=\frac{22.287}{7.91}

\boxed{v' = 2.82\ m/s}

The velocity after the collision is 2.82 m/s

You might be interested in
A charge of -3.02 μC is fixed in place. From a horizontal distance of 0.0377 m, a particle of mass 9.43 x 10^-3 kg and charge -9
Andreyy89

Answer:

d = 0.0306 m

Explanation:

Here we know that for the given system of charge we have no loss of energy as there is no friction force on it

So we will have

U + K = constant

\frac{kq_1q_2}{r_1} + \frac{1}{2}mv_1^2 = \frac{kq_1q_2}{r_2} + \frac{1}{2}mv_2^2

now we know when particle will reach the closest distance then due to electrostatic repulsion the speed will become zero.

So we have

\frac{(9 \times 10^9)(3.02 \mu C)(9.78 \mu C)}{0.0377} + \frac{1}{2}(9.43 \times 10^{-3})(80.4)^2 = \frac{(9 \times 10^9)(3.02 \mu C)(9.78 \mu C)}{r} + 0

7.05 + 30.5 = \frac{0.266}{r}

r = 7.08 \times 10^{-3} m

so distance moved by the particle is given as

d = r_1 - r_2

d = 0.0377 - 0.00708

d = 0.0306 m

6 0
3 years ago
PLEASE HELP ME I AM TIMED!
cupoosta [38]
I believe the answer is D
3 0
3 years ago
Too much skepticism can
Artyom0805 [142]
What part of the bacterial cell helps it stick to surfaces
3 0
3 years ago
Projectiles that strike objects are good examples of inelastic collisions. A 0.1 kg nail driven by a gas powered nail driver col
Ratling [72]
In an inelastic collision, only momentum is conserved, while energy is not conserved.

1) Velocity of the nail and the block after the collision
This can be found by using the total momentum after the collisions:
p_f=(m+M)v_f=4.8 kg m/s
where
m=0.1 kg is the mass of the nail
M=10 kg is the mass of the block of wood
Rearranging the formula, we find v_f, the velocity of the nail and the block after the collision:
v_f= \frac{p_f}{m+M}= \frac{4.8 kg m/s}{0.1 kg+10 kg}=  0.48 m/s

2) The velocity of the nail before the collision can be found by using the conservation of momentum. In fact, the total momentum before the collision is given only by the nail (since the block is at rest), and it must be equal to the total momentum after the collision:
p_i = mv_i = p_f
Rearranging the formula, we can find v_i, the velocity of the nail before the collision:
v_i =  \frac{p_f}{m}= \frac{4.8 kg m/s}{0.1 kg}=48 m/s
6 0
3 years ago
Read 2 more answers
A new conveyor system at the local packaging plant will utilize a motor powered mechanical arm to exertion average force of 890N
valkas [14]

Answer:

power =( 890 N x 12 m ) / 22 s=

=   485 Watts

Explanation:

4 0
2 years ago
Other questions:
  • A cart is pulled horizontally with a 156.6 N force to the right at a 67 degree angle with respect to the ground. The cart is mov
    15·1 answer
  • This is a model of a Neon atom. How likely is it that this atom would want to bond with another atom? Neon atom Question 5 optio
    7·1 answer
  • A ball is tossed in the air and released. It moves up, reverses direction, falls back down again, and is caught at the same heig
    13·2 answers
  • Which of the following is an example or an orginasm mantaining homeostasis
    5·1 answer
  • The model of the universe that suggests that the sun is the center of the universe was first brought by
    5·2 answers
  • What effects does using fossil fuels have on our planet
    13·2 answers
  • The ball of a ballpoint pen is 0.5 mm in diameter and has an ASTM grain size of 12. How many grainsare there in the ball
    14·1 answer
  • Momentum is most similar to which other physics concept?
    11·1 answer
  • Why does it take more force to get a resting object to move than it does to keep
    6·1 answer
  • On what factors does critical velocity depend on
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!