Answer: 5
Explanation: nitrogen has atomic number of 7 and its electronic configuration is 2, 5.
5 is the number of electrons in the outermost shell
Because the the sand on the sea for is very compact and the water salt and chemicals make it compact making it stick together and fill up holes or cracks before going anyhere
So we have Barium nitrate with a solubility of 8.7g in 100g water at 20°C.
using that relation
i.e.
8.7g (barium nitrate) =100g (water)
1g barium nitrate = 100/8.7 g water
27g barium nitrate = (100/ 8.7 ) × 27
= 310.34 g
therefore,
you need 310.34g of water is in the jar.
½H2(g) + ½I2(g) → HI(g) ΔH = +6.2 kcal/mol
or...
½H2(g) + ½I2(g) + 6,2kcal/mole → HI(g)
________
21.0 kcal/mole + C(s) + 2S(s) → CS2(l)
or...
C(s) + 2S(s) → CS2(l) ΔH = +2,1 kcal/mole
_________
ΔH > 0 ----------->>> ENDOTHERMIC REACTIONS
Answer:
The group number in the periodic table represents number of valence electrons of the elements in a certain group.
Explanation:
There are s, p, d, and f blocks, which you can see in periodic table
The s-block and p-block together are usually considered main-group elements, the d-block corresponds to the transition metals, and the f-block encompasses nearly all of the lanthanides (like lanthanum) and the actinides (like actinium)
There are three main principles, which may useful for you:
- The Pauli exclusion rule basically says that at most, 2 electrons are allowed to be in the same orbital.
- Hund’s rule explains that each orbital in the subshell must be occupied with one single electron first before two electrons can be in the same orbital.
- The Aufbau process describes the process of adding electron configuration to each individualized element in the periodic table.
Hope this helps!