Answer:
Volume of sample after droping into the ocean=0.0234L
Explanation:
As given in the question that gas is idealso we can use ideal gas equation to solve this;
Assuming that temperature is constant;
Lets
and
are the initial gas parameter before dropping into the ocean
and
and
are the final gas parameter after dropping into the ocean
according to boyle 's law pressure is inversly proportional to the volume at constant temperature.
hence,

P1=1 atm
V1=1.87L
P2=80atm
V2=?
After putting all values we get;
V2=0.0234L
Volume of sample after droping into the ocean=0.0234L
The answer is b, because all of the other compounds are covelent
Answer:
ΔG=ΔG0+RTlnQ where Q is the ratio of concentrations (or activities) of the products divided by the reactants. Under standard conditions Q=1 and ΔG=ΔG0 . Under equilibrium conditions, Q=K and ΔG=0 so ΔG0=−RTlnK . Then calculate the ΔH and ΔS for the reaction and the rest of the procedure is unchanged.
Explanation:
Answer:
the answer is c. their atomic masses are different clearly because an atom of gold has 79 protons and the atom can be divided multiple times. An atom of silver has an atomic number of 47. 47 electrons. Clearly different. Hope it helps :)
Explanation:
Answer:
It can't be done.
Explanation:
If you have only 5.4 g of oxygen, the most lithium oxide you can get is 7.7 g.
Only 2.3 g of lithium will react. and the other 22.3 g of lithium will not be used.