Answer:
<h2>The answer is 1.48 L</h2>
Explanation:
In order to find the original volume we use the same for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the original volume

From the question
P1 = 172 kPa = 172000 Pa
P2 = 85 kPa = 85000 Pa
V2 = 3 L
We have

We have the final answer as
<h3>1.48 L</h3>
Hope this helps you
Incomplete combustion<span> occurs when the supply of air or oxygen is poor. Water is still </span>produced<span>, but </span>carbon<span> monoxide and </span>carbon<span> are </span>produced<span> instead of </span>carbon dioxide<span>. The </span>carbon<span> is released as soot. </span>Carbon<span> monoxide is a poisonous gas, which is one reason why </span>complete combustion<span> is preferred to </span>incomplete combustion<span>.</span>
AgBr(s) <—> Ag+(aq) + Br-(aq)
Ksp = [Ag+][Br-]
Answer:
Explanation:
250 cm^3 of 0.2 moldm-3 H2SO4 can be prepared from 150cm^3 of 1.0 moldm^-3 by dilution.
150cm^3 of the 1.0 moldm^-3 stock solution is measured out using a measuring cylinder and transferred into a 250 cm^3 standard volumetric flask and made up to mark. The resulting solution is now 250cm^3 of 0.2 moldm-3 H2SO4.
Answer:
Electromagnetic Force
Explanation:
Every aspect of chemical reaction is the output of electromagnetic force though the forces can take on many forms because of the quantum wave nature of particles.
The electromagnetic force has the ability to attract opposite charges such as protons and electrons and it repels same charges such as electrons and protons.
This force is an important force in the chemical reaction as it it is responsible for bonding between atoms. Though other forces are unique in their own way but they don't affect chemical reaction. Force of gravity is not strong enough to affect chemical reactions; when nuclear forces are involved in a reaction, such reaction is a nuclear reactor; not chemical reaction.
One of the roles of the electromagnetic force in chemical reaction is that it holds the electrons that are in the outer orbit around the nucleus; this, in the long run creates bonds with other chemical elements to create a visible matter.