1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liq [111]
3 years ago
14

The acceleration of a particle as it moves along a straight line is given

Engineering
1 answer:
BARSIC [14]3 years ago
4 0

Answer:

V_t=6 = 32 m/s

Explanation:

The origin is at point 0 with the positive motion to the right  

The instantaneous acceleration is change of velocity measured at infinitesimal interval of time, so the expression for instantaneous acceleration is:  

a=dv/dt

From here we can express dv as:

dv = a dt

Replace a by 2t — 1

dv = (2t — 1) dt

Integrate both sides of equation  

\int\limits^v_a  {2t-1} \, dv

v=t

a=t_0

putting these value in integral

<em>v-v_0=(t^2-t)-(t_0^2-t_0)</em>

We know that v_0 = 2 at t_0 = 0, so we'll replace t_0 and v_0 by their values

v — 2 = (t^2 — t) — (0^2 — 0)

From here we can write the expression for v as:  

v_t=6=6^2-6+2                             (1)  

So the velocity at t = 6 s is:

v_t=6 = 32 m/s

V_t=6 = 32 m/s

In order to determine the total distance travelled, we must check how maw times the particle has changed its direction, i.e. how many times its speed was equal to zero  

To do that, we'll just replace v by 0 in expression (1)

0 = t^2 — t + 2

The roots of the quadratic equation are:

t_1/2=1±  √(1^2-4*2*1)/2

Since 1^2-4*2*1 < 0, the quadratic equation have no real roots, so we can say that the velocity is always positive, i.e. to the right  

Now that we have all the details, we can correctly draw the path of the particle  

We can see from the sketch that the total distance traveled is:  

s^T=Δs_0-1

s^T=| s_1 - s_0 |

Replace s_0 by its value  

s^T=| s_1 - 1 |                                        (2)  

In order to determine the position of particle at t = 6 s, we'll need to determine the expression for s as function of time  

Since we have already wrote expression for v as function of time (step 2), we'll use expression  to get the expression for s

v= ds/dt  

Multiply both sides of equation by dt

v dt = ds

Replace v by expression (1)

(t^2 — t + 2) dt = ds

Integrate both sides of equation  

\int\limits^t_b {x} \, dx

t=s

b=(s=0)

x=(t^2 — t + 2)

dx=ds

putting these value in integral

(t^3/3-t^2/2+t)-(t_0^3/3-t_0^2/2+t_0)= s-s_0

Since s = 1 m at t = 0, and we want to determine the position s at t = 6, we'll replace so by 1, t_0 by 0 and t by 6  

(6^3/3-6^2/2+6)-(0^3/3-0^2/2+0)=s_t=6-1

You might be interested in
A PMMA plate with a 25 mm (width) x 6.5 mm (thickness) cross-section has a contained crack of length 2c = 0.5 mm in the center o
victus00 [196]

Answer:

LAOD = 6669.86 N

Explanation:

Given data:

width= 25 mm = 25\times 10^{-3} m

thickness = 6.5 mm = 6.5\times 10^{-3} m

crack length 2c = 0.5 mm at centre of specimen

\sigma _{applied} =  1000 N/cross sectional area

stress intensity factor  =  k  will be

\sigma_{applied} = \frac{1000}{25\times 10^{-3}\times 6.5\times 10^{-3}}

                   = 6.154\times 10^{6} Pa

we know that

k =\sigma_{applied} (\sqrt{\pi C})

  =6.154\sqrt{\pi (2.5\times 10^{-04})}          [c =0.5/2 = 2.5*10^{-4}]

K = 0.1724 Mpa m^{1/2} for 1000 load

ifK_C = 1.15 Mpa m^{1/2} then load will be

Kc = \sigma _{frac}(\sqrt{\pi C})

1.15 MPa = \sigma _{frac}\times \sqrt{\pi (2.5\times 10^{-04})}

\sigma _{frac} = 41.04 MPa

load = \sigma _{frac}\times Area

load = 41.04 \times 10^6 \times 25\times 10^{-3}\times 6.5\times 10^{-3} N

LAOD = 6669.86 N

3 0
2 years ago
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
3 years ago
2. What is the Function of the Camshaft in an Internal Combustion Engine?
mamaluj [8]

Answer:

camshaft, in internal-combustion engines, rotating shaft with attached disks of irregular shape (the cams), which actuate the intake and exhaust valves of the cylinders.

Explanation:

I'm taking an engineering/tech class. I hope this helps! :)

8 0
3 years ago
write down your own definition of Engineering, preferably in 4-5 sentences. Maximum of 150 words for your definition???.​
ollegr [7]

Answer:

A charge q1=7.0mc is located at the origin and a second charge q2=-5.0mc is located on the x axis, 0.3m the origin find the electric field at the point p which he's coordinates (0,0.40)m

4 0
3 years ago
Engineering Careers Scavenger Hunt
emmasim [6.3K]

Answer:

c

Explanation:

it's the only engineering career

6 0
3 years ago
Read 2 more answers
Other questions:
  • Argon is compressed in a polytropic process with n=1.2 from 120 kPa and 10 °C to 800 kPa in a piston cylinder device. Determine:
    11·1 answer
  • Determine F12 and F21 for the following configurations: (a) A long semicircular duct with diameter of 0.1 meters: (b) A hemisphe
    10·1 answer
  • (40%) A bank wants to store the account number of its customers (an 8-digit number) in encrypted form on magnetic stripe ATM car
    7·1 answer
  • calculate the magnitude of the force acting on the pin at D. Pin C is fixed in DE and bears against the smooth slot in the trian
    9·1 answer
  • Different between an architect and an engineer​
    15·1 answer
  • How did engineers help to create a ceiling fan
    8·1 answer
  • 2.
    7·1 answer
  • Example 12: Write an algorithm and draw a flowchart to calculate
    12·1 answer
  • Engine vacuum is being discussed. Technician A says that when the engine is operating under light loads, engine vacuum is low. T
    11·1 answer
  • Write a SELECT statement that returns these four columns:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!