A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
Answer:
eukaryotic cells
Explanation:
"Smooth endoplasmic reticulum (sER) is (a part of) endoplasmic reticulum that is tubular in form and lacks ribosomes. It is present in eukaryotic cells and is associated with lipid synthesis, carbohydrate metabolism, regulation of calcium concentration, and drug detoxification"
source: biologyonline
Answer:
16 ohms
Explanation:
V=
I
⋅
R
where, V is the net potential difference in the circuit, I is the current in the circuit and R is the net resistance of the circuit.
In this case, V
=
240 volts, I
=
15 amperes.
240
=
15
⋅
R
⇒
R
=
240/
15
=
16 ohms
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance: