The final momentum of the body is equal to 120 Kg.m/s.
<h3>What is momentum?</h3>
Momentum can be described as the multiplication of the mass and velocity of an object. Momentum is a vector quantity as it carries magnitude and direction.
If m is an object's mass and v is its velocity then the object's momentum p is:
. The S.I. unit of measurement of momentum is kg⋅m/s, which is equivalent to the N.s.
Given the initial momentum of the body = Pi = 20 Kg.m/s
The force acting on the body, Pf = 25 N
The time, Δt = 4-0 = 4s
The Force is equal to the change in momentum: F ×Δt = ΔP
25 × 4 = P - 20
100 = P - 20
P = 100 + 20 = 120 Kg.m/s
Therefore, the final momentum of a body is 120 Kg.m/s.
Learn more about momentum, here:
brainly.com/question/4956182
#SPJ1
Answer: It frees up valuable portions of the broadcast spectrum, it has better audio and picture quality, and there are more options on digital broadcasting
Explanation:
The correct answer is D, Diamond
Answer:
1. Elastic collision
2. Inelastic collision
Explanation:
Elastic collision: collision is said to be elastic if total kinetic energy is not conserved and if there is a rebound after collision
the collision is described by the equation bellow

Inelastic collision: this type of collision occurs when the total kinetic energy of a body is conserved or when the bodies sticks together and move with a common velocity
the collision is described by the equation bellow

The electric potential at point A in the electric field= 0.099 x 10 ⁻¹v
<u>Explanation</u>:
Given data,
charge = 5.5 x 10¹² C
k =9.00 x 10⁹
The electric potential V of a point charge can found by,
V= kQ / r
Assuming, r=5.00×10⁻² m
V= 5.5 x 10⁻¹²C x 9.00 x 10⁹ / 5.00×10⁻² m
V= 49.5 x 10⁻³/ 5.00×10⁻²
Electric potential V= 0.099 x 10⁻¹v