<em>Answers:</em>
<em>1. The hot soup will loose the heat and the ice water will gain the heat</em>
- If two jars are insulated inside the insulated box, the heat may not be transferred to outside of the box.
- According to II law of thermodynamics, Heat always flow from high temperature body to low temperature body, with out aid of external energy.
<em>So, from two points, it is concluded that The hot soup will lose heat and the ice water will gain the heat until they reach the thermodynamic equilibrium.</em>
<em>2. The particles in gases are farther apart and move faster </em>
- Particles in the gases are loosely packed (greater distance between particles compared to solids and liquids) and particles collide less often.
<em>Therefore conduction is weak in gases compared to solids and liquids.</em>
<em>3. Heat and milk by conduction; popping popcorn by radiation.</em>
- The heat can transfer from pot to the milk by conduction because they are in contact at boundaries, similarly the pot and the stove are in contact <em>so the conduction transfers heat from pot to the milk. </em>
- In microwave oven there is no direct contact (<em>no conduction</em>) of heat and popcorn, also there is no molecular momentum transfer <em>(means of no convection).</em>
<em>So obviously the heat transfer by radiation occurs in a microwave oven.</em>
Answer:
Explanation:
Amplitude is a measure of the size of sound waves. It depends on the amount of energy that started the waves. Greater amplitude waves have more energy and greater intensity, so they sound louder.
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>