Answer:
12.74 ms^-1 download
Explanation:
v=28.2, a=9.81
start from rest u=0
v=u+at=0+(9.81)t=28.2
t=2.875...
it reach 1.4 second before hitting the ground:
t=1.4, u=0, a=9.81
v=u+at=0+(9.81)(1.4)=12.74
Here are the answers to the given question above.
<span>Relative dating uses laws or principles of stratigraphy and paleontology. These laws of relative dating are:
-</span><span>law of original horizontality
-</span><span>law of superposition
-</span><span>law of original lateral continuity
-</span><span>law of cross-cutting or intrusive relationships
Hope these are the answers that you are looking for.</span>
Answer:
The power drawn by the toaster is closest to:
(A) 370 W
Explanation:
First we calculate the resistance of the nichrome wire (R).

Where radious (r), resistance coefficient (p), and Length (L)

After replace the value in the ohm law power formula to obtain the power consumed:

Answer:
<em>A = 6.9 cm</em>
Explanation:
<u>Simple Harmonic Motion</u>
A mass-spring system is a common example of a simple harmonic motion device since it keeps oscillating when the spring is stretched back and forth.
If a mass m is attached to a spring of constant k and they are set to oscillate, the angular frequency of the motion is

The equation for the motion of the object is written as a sinusoid:

Where A is the amplitude.
The instantaneous speed is computed as the derivative of the distance

And the maximum speed is

Solving for the amplitude

Computing w

Calculating A

