Boyles law describes pressure volume relationship at constant temperature pressure is directly proportional to volume at constant tamparature
Answer:
a) Yes
b) No
Explanation:
In the first case, part a, yes we can say for certainty that cylinderical symmetry holds. Why so? You may ask. This is because from the question, we are told that the length of the rod is 300 cm. And this said length is longer than the distance to the point from the center of the rod, which is 5 cm.
In the second half of the question, I beg to disagree that cylindrical symmetry holds. Again, you may ask why, this is because the length of the rod in this case, is having the same order of magnitude as the distance to the center of the rod. Thus, it is not symmetrical.
The answer is: " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V ; That is, "mass divided by volume" ;
Density is expressed as:
__________________________________________
"mass per unit volume"; in which the "mass" is expressed in units of "g" ("grams") ; and the "unit volume" is expressed in units of:
"cm³ " or "mL";
_____________________________________________
{Note the exact equivalent: 1 cm³ = 1 mL }.
____________________________________________
→ The formula is: " D = m / V " ;
___________________________________________
in which:
"D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given);
"m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
"V" refers to the "volume", in units of "cm³ " ;
which is: "23.4 cm³ " (given);
_________________________________________________
We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________
D = m / V ;
_________________________________________________________
And we rearrange; to isolate "m" (mass) on ONE side of the equation; and then we plug in our known/given values;
to solve for "m" (mass); in units of "g" (grams) ;
___________________________________________________
Multiply each side of the equation by "V" ;
____________________________________________________
V * { D = m / V } ; to get:
____________________________________________________
V * D = m ; ↔ m = V * D ;
___________________________________________________
Now, we plug in the given values for "V" (volume) and "D" (density) ; to solve for the mass, "m" ;
______________________________________________________
m = V * D ;
m = (23.4 cm³) * (8.9 g / 1 cm³) = (23.4 * 8.9) g = 208.26 g ;
→ Round to "208 g" (3 significant figures);
____________________________________
The answer is: " 208 g " .
_____________________________________________________