This effect is explained by increased chain entanglements at higher molecular weights. Increasing the degree of crystallinity of a semicrystalline polymer leads to an enhancement of the tensile strength. Deformation by drawing increases the tensile strength of a semicrystalline polymer.
Answer:
Elastic potential energy, E = 200 J
Explanation:
It is given that,
Spring constant, K = 4 N/m
initial stretching in the spring, x = 5 m
Finally, it is stretched an additional 5 m i.e. x' = 5 m
Let E is the elastic energy in the spring after Varg stretches the spring. it is given by :


E = 200 J
So, the elastic energy in the spring after Varg stretches the spring is 200 J. hence, this is the required solution.
Answer:
distance = 112 miles
Explanation:
its 12 miles every 0.6 in a hour
Answer:
The answer is
<h2>28 kg</h2>
Explanation:
The mass of an object given it's momentum and velocity / speed can be found by using the formula

where
m is the mass
p is the momentum
v is the speed or velocity
From the question
p = 280 kg/ms
v = 10 m/s
The mass of the object is

We have the final answer as
<h3>28 kg</h3>
Hope this helps you