Answer:
that's because....
group 1 (e.g Na, K) those tend to lose one electron to gain noble gas electron configuration.
they can achieve that by just losing one electron from their outer shell.
as you go down the group 1, element gets bigger in size, which means there is more space between nucleus (which is in center of atom) and electron of outer shell. the more far away they are the less attraction force between them.
so its easier for potassuim to lose one electron than for lithuim.
so that means potassium will easily give up 1 electron to react with non metal or other element therefore it is more reactive than lithuim
but in case of non metal, the opposite happens but simple to understand.
as you go down the group 7 (halogen- Cl, Br, I) element will get bigger therefore force between nucleus and outer electron is getting smaller. they have to gain 1 electron in order to fill the outer shell (to gain noble gas electron configuration.)
as florine is more smaller in size than clorine it is more reactive because florine has more tendency to pull extra electron from metal or other element towards its side. so it easily gain 1 electron to react.
A carbon which is attached to four different atoms or group of atoms with different environment is called as
Chiral Carbon or
Asymmetric Carbon.
Non-<span>
superimposable:
</span> The mirror image (molecule) of chiral carbon cotaining compounds are Non.Superimposable on each other. They are called enantiomers of each other.
Polarized Light and Chiral Carbon: When a polarized light is allowed to fall on either enantiomer of chiral compound, it is rotated other clockwise or anti-clockwise.
Examples: Below are three axamples of compounds containing chiral carbon.
The layer of atmosphere that MOST planes fly in is called the troposphere.
Answer:
The smell of a chocolate is from the presence of volatile compounds present in the chocolate bar which at room temperature readily changes phase from solid to liquid to vapor or gas
Explanation:
There are nearly 600 identified compounds present in a chocolate bar and out of these, there are volatile components which gives the chocolate bar its distinctive aroma.
These volatile chocolate contents readily change phase from solid to vapor, with very short duration liquid phase.
For example, 3 methylbutanal, vanillin, and several organic compounds which are known to be readily volatile.