1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brums [2.3K]
3 years ago
13

A ball with a mass of 170 g which contains 3.80×108 excess electrons is dropped into a vertical shaft with a height of 145 m . A

t the bottom of the shaft, the ball suddenly enters a uniform horizontal magnetic field that has a magnitude of 0.250 T and direction from east to west.
A)If air resistance is negligibly small, find the magnitude of the force that this magnetic field exerts on the ball just as it enters the field.

Use 1.602×10−19 C for the magnitude of the charge on an electron.

B)Find the direction of the force that this magnetic field exerts on the ball just as it enters the field.

a-from north to south

b-from south to north
Physics
1 answer:
yaroslaw [1]3 years ago
8 0

Answer:

A. F=6.65*10^{-10}N

B. south - north

Explanation:

A) We use the Lorentz force

F = qv X B

|F| = qvB

to calculate the magnitude of the force we need the speed of the of the ball.

v_{f}^{2}=v_{0}^{2}+2gy\\v_{f}=\sqrt{0+2(9.8\frac{m}{s^{2}})(145m)}=53.31\frac{m}{s}

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

F=(3.8*10^{8})(1.602*10^{-19}C)(53.31\frac{m}{s})(0.205T)=6.65*10^{-10}N

B)

b.  south - north (by the rigth hand rule)

I hope this is usefull for you

regards

You might be interested in
A simple model for a person running the 100 m dash is to assume the sprinter runs with constant acceleration until reaching top
Trava [24]

Answer:

He will complete the race in total time of T = 10 s

Explanation:

Total distance moved by the sprinter in 2.14 s is given as

s = \frac{(v_{in} + v_{f})}{2} time

s = \frac{(0 + 11.2)}{2} (2.14)

s = 11.98 m

now the distance remaining to move

d = 100 - 11.98 = 88 m

now he will move with uniform maximum speed for the remaining distance

so we will have

time = \frac{d}{v}

time = \frac{88}{11.2} = 7.86 s

so the total time to complete the race is given as

T = 7.86 + 2.14 = 10 s

6 0
3 years ago
3. If a voltage difference of 3.0 V causes a
MAXImum [283]

Answer:

it will be 1.8. voltage

that is wat I can't say

5 0
3 years ago
A thin hoop is hung on a wall, supported by a horizontal nail. The hoop's mass is M=2.0 kg and its radius is R=0.6 m. What is th
boyakko [2]

Answer:

Explanation:

Given that,

Mass of the thin hoop

M = 2kg

Radius of the hoop

R = 0.6m

Moment of inertial of a hoop is

I = MR²

I = 2 × 0.6²

I = 0.72 kgm²

Period of a physical pendulum of small amplitude is given by

T = 2π √(I / Mgd)

Where,

T is the period in seconds

I is the moment of inertia in kgm²

I = 0.72 kgm²

M is the mass of the hoop

M = 2kg

g is the acceleration due to gravity

g = 9.8m/s²

d is the distance from rotational axis to center of of gravity

Therefore, d = r = 0.6m

Then, applying the formula

T = 2π √ (I / MgR)

T = 2π √ (0.72 / (2 × 9.8× 0.6)

T = 2π √ ( 0.72 / 11.76)

T = 2π √0.06122

T = 2π × 0.2474

T = 1.5547 seconds

T ≈ 1.55 seconds to 2d•p

Then, the period of oscillation is 1.55seconds

6 0
3 years ago
What is the length of the x-component of the vector shown below?
ollegr [7]

Answer:

Option B. 8.1

Explanation:

From the question given above, the following data were obtained:

Angle θ = 71°

Hypothenus = 25

Adjacent = x

Thus, we can obtain the x component of the vector by using the cosine ratio as illustrated below:

Cos θ = Adjacent /Hypothenus

Cos 71 = x/25

Cross multiply

x = 25 × Cos 71

x = 25 × 0.3256

x = 8.1

Therefore, the x component of the vector is 8.1

4 0
3 years ago
A particularly scary roller coaster contains a loop-the-loop in which the car and rider are completely upside down. If the radiu
Pepsi [2]

Answer:

v = 10.89\ m/s

Explanation:

given,                          

radius of loop = 12.1 m                              

to find the minimum speed transverse by the rider to not to fall out upside down                                                                

centripetal force = \dfrac{mv^2}{r}

gravitational force  = m g

computing both the equation]

mg = \dfrac{mv^2}{r}

v = \sqrt{rg}

v = \sqrt{12.1 \times 9.8}

v = \sqrt{118.58}

v = 10.89\ m/s

5 0
3 years ago
Other questions:
  • Suppose the sun were to suddenly disappear. what would happen to the orbital path of earth? it would stay the same, but the eart
    13·2 answers
  • Landslides are most common in
    10·1 answer
  • When water moves from a gas state to a liquid state, it is experiencing ______.
    8·2 answers
  • In which state of matter do the particles have the most energy?
    7·2 answers
  • An entertainer juggles balls while doing other activities. In one act, she throws a ball vertically upward, and while it is in t
    5·1 answer
  • A 78.5-kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above w
    9·1 answer
  • Two ropes are attached to a 35 kg object. The first rope applies a force of 20 N and the second applies a force of 55 N. If the
    11·2 answers
  • In a chemical reaction blank are the substances left over
    7·1 answer
  • A rocket is fired vertically upwards starting frkm rest. It accelerates at 30m/s for 4secs. At the end of 4secs it runs out of f
    13·1 answer
  • If mason runs a 5 k race at an average speed of 300 m/min how long will it take him to finish
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!