Answer:
The Required pressure for this situation is P= 735000Pa
Explanation:
In Determining the required pressure in this situation we use two equations
First one is
F = mg = (ρhA)g
And Second one is
P =
= (ρhAg)/A Where P is pressure
We get
P = ρhg
since g = 9.8 m/s and h is given that is 75m and ρ = 
so
P = (9.8 m/s)(
)(75) we get
P = 735000 Pa
Explanation:
The mass of a ball, m = 2 kg
It is traveling with a speed of 10 m/s
The ball's kinetic energy just as it leaves the boy's hand is calculated as follows :

The ball's kinetic energy just as it leaves the boy's hand is 100 J. The potential energy of the ball when it reaches the highest point is same as the kinetic energy as it leaves the boy's hand.
Hence, the required kinetic and potential energy is 100 J.
Answer:
292.3254055 W/m²
469.26267 V/m

Explanation:
P = Power of bulb = 90 W
d = Diameter of bulb = 7 cm
r = Radius = 
= Permittivity of free space = 
c = Speed of light = 
The intensity is given by

5% of this energy goes to the visible light so the intensity is

The visible light intensity at the surface of the bulb is 292.3254055 W/m²
Energy density of the wave is

Energy density is also given by

The amplitude of the electric field at this surface is 469.26267 V/m
Amplitude of a magnetic field is given by

The amplitude of the magnetic field at this surface is 
The basic monomer of a lipid is a triglyceride. It breaks down into one glycerol molecule and 3 fatty acid tails.
The change in the height of the object is 5.1 m.
<h3>Conservation of mechanical energy</h3>
The principle of conservation of mechanical energy states that the total energy of an isolated system is always conserved.
The change in the height of the object is calculated by applying the principle of conservation of mechanical energy as follows;
P.E = K.E

Thus, the change in the height of the object is 5.1 m.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965