In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.
Answer:
c
Explanation:
cuz its informing the length of 5 and weight on 20N
Answer:
The final velocity of the thrower is
and the final velocity of the catcher is
.
Explanation:
Given:
The mass of the thrower,
.
The mass of the catcher,
.
The mass of the ball,
.
Initial velocity of the thrower, 
Final velocity of the ball, 
Initial velocity of the catcher, 
Consider that the final velocity of the thrower is
. From the conservation of momentum,

Consider that the final velocity of the catcher is
. From the conservation of momentum,

Thus, the final velocity of thrower is
and that for the catcher is
.
Answer: The wheel's average rotational acceleration is -0.4 radians per second squared (rad/s^2)
Explanation: Please see the attachments below
My calculator is about 1cm thick, 7cm wide, and 13cm long.
Its volume is (length) (width) (thick) = (13 x 7 x 1) = 91 cm³ .
The question wants me to assume that the density of my calculator
is about the same as the density of water. That doesn't seem right
to me. I could check it easily. All I have to do is put my calculator
into water, watch to see if sinks or floats, and how enthusiastically.
I won't do that. I'll accept the assumption.
If its density is actually 1 g/cm³, then its mass is about 91 grams.
The choices of answers confused me at first, until I realized that
the choices are actually 1g, 10² g, 10⁴ g, and 10⁶ g.
My result of 91 grams is about 100 grams ... about 10² grams.
Your results could be different.