Answer:
63.5 °C
Explanation:
The expression for the calculation of work done is shown below as:
Where, P is the pressure
is the change in volume
Also,
Considering the ideal gas equation as:-

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 8.314 J/ K mol
So,

Also, for change in volume at constant pressure, the above equation can be written as;-

So, putting in the expression of the work done, we get that:-
Given, initial temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.0 + 273.15) K = 301.15 K
W=1770 J
n = 6 moles
So,
Thus,


The temperature in Celsius = 336.63-273.15 °C = 63.5 °C
<u>The final temperature is:- 63.5 °C</u>
Answer:
12500(kg*m/s)
Explanation:
F=ma=mv/t=p/t
p=F*t=500N*25 s=12500(kg*m/s)
Answer:
0.02 s
Explanation:
Take the (+x) direction to be up.
The average velocity v during a time interval Δt is the displacement Δx divided by Δt.
v=Δx/Δt
=x_f-x_i/t_f-t_i (1)
We assume that your height is 1.6m
Solving [1]
Δt=Δx/v
= 0.02 s
Your car is performing a transformation of energy of:
Chemical energy to Mechanical energy
The chemical is the gasoline which is then converted to fire as the car runs thus creating the movement of the car which is mechanical energy.