I believe Box B will have a greater gravitational pull because the gravitational pull of an object depends on its mass. The more mass an object has, the greater its gravitational pull will become.
For example, we can take planets. Naturally, they are round because once upon a time there was a larger piece of rock that attracted others. But the size of the rock won't matter, it's the weight that matters. If the rock weighed nothing, the other rocks would just rebound upon contact. But if the rock weighed a lot, then things wouldn't so easily rebound and might actually stick to it.
Answer:
Point A
Explanation:
The work done by stretching or compressing a spring is given by E=1/2kx²
The potential energy is numerically equal to the work done.
This means that the higher the bigger the value of the extension, x, the higher the energy contained.
In this scenario the modulus of x is considered.
Among the given values of x the modulus of -5 is the largest.
thus it gives the highest value of energy.
In quantum mechanics, a central concept is that both matter and <u>energy</u> are alternate forms of the same entity and therefore both exhibit dual characteristics of particles and of <u>waves</u>.
Matter can be defined as anything that has mass and is able to occupy space.
Thus, any physical object or substance that is found on Earth is typically composed of matter.
Similarly, energy is highly affected by the mass of a any physical object or substance just like matter,
Hence, both energy and matter are known to be made up of atoms and as a result of this fact, exhibit dual characteristics of particles and of waves.
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In conclusion, this central concept makes it easier for us to better understand the behavior of tiny particles such as electrons.
Find more information: brainly.com/question/17203857
Given:
1st run: 20 meters North
2nd run: 15 meters East
time: 15 seconds
Average speed = total distance covered / total time taken
Ave. Speed = (20m + 15m) / 15s
Ave. Speed = 35m / 15s
Ave. Speed = 2 1/3 meters per second
Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively