1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
5

At a distance of 11 cm from a presumably isotropic, radioactive source, a pair of students measure 65 cps (cps = counts per seco

nd). On average, how many counts per second do you expect at a distance of 20 cm? (Note that the average number of counts per second need not be an integer.)
Physics
1 answer:
Alborosie3 years ago
7 0

To solve the problem, it is necessary the concepts related to the definition of area in a sphere, and the proportionality of the counts per second between the two distances.

The area with a certain radius and the number of counts per second is proportional to another with a greater or lesser radius, in other words,

A_1*m=M*A_2

A_i =Area

M,m = Counts per second

Our radios are given by

r_1 = 11cm

R_2 = 20cm

m = 65cps

Therefore replacing we have that,

A_1*m=M*A_2

4\pi r_1^2*m = M * 4\pi R_2^2 M

r^2*m=MR^2

M = \frac{m*r^2}{R^2}

M = \frac{65*11^2}{20^2}

M = 19.6625cps

Therefore the number of counts expect at a distance of 20 cm is 19.66cps

You might be interested in
Because the pressure falls, water boils at a lower temperature with increasing altitude. Consequently, cake mixes and boiled egg
AlexFokin [52]

Answer:

1) The boiling point of water reduces by 3.28°C at 1,000 m above sea-level

2) The boiling point of water reduces by 6.56°C at 2,000 m above sea-level

Explanation:

The variation of the boiling point of water with elevation is given as follows

The boiling point reduces by 0.5°C for every 152.4 meter increase in elevation

At sea-level, the boiling point temperature of water = 100°C

1) At 1,000 m elevation, the boiling point temperature, T = 100 - (1,000/152.4) × 0.5 ≈ 96.72 °C

Therefore, the boiling point of water reduces by 100° - 96.72° = 3.28°C at 1,000 m above sea-level

2) At 2,000 m elevation, the boiling point temperature, T = 100 - (2,000/152.4) × 0.5 ≈ 93.44°C

The boiling point of water reduces by 100° - 93.44° = 6.56°C at 2,000 m above sea-level

7 0
3 years ago
Yall have helped a lot i just need help on this then ill be done for a while
Lubov Fominskaja [6]

Answer:

f(x)=a(x - h)2 + k

Much like a linear function, k works like b in the slope-intercept formula. Like where add or subtract b would determine where the line crosses, in the linear, k determines the vertex of the parabola. If you're going to go up 2, then you need to add 2.

The h determines the movement horizontally. what you put in h determines if it moves left or right. To adjust this, you need to find the number to make the parentheses equal 0 when x equals -2 (because moving the vertex point to the left means subtraction/negatives):

x - h = 0

-2 - h = 0

-h = 2

h = -2

So the function ends up looking like:

f(x)=a(x - (-2))2 + 2

Subtracting a negative cancels the signs out to make a positive:

f(x)=a(x + 2)2 + 2Explanation:

6 0
3 years ago
An automobile traveling 95 km/h overtakes a 1.30-km-long train traveling in the same direction on a track parallel to the road.
SOVA2 [1]

Answer:

Same direction: t=234s; d=6.175Km

Opposite direction: t=27.53s; d=0.73Km

Explanation:

If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be v_{AT}=v_A-v_T (<em>the train must see the car advancing at a lower speed</em>), where v_A is the speed of the automobile and v_T the speed of the train.

So we have v_{AT}=(95km/h)-(75Km/h)=20Km/h.

So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:

t = \frac{L}{v_{AT}} = \frac{1.3Km}{20Km/h} = 0.065h=234s

And in that time the car would have traveled (<em>relative to the ground</em>):

d=v_At=(95Km/h)(0.065h)=6.175Km

If they are traveling in opposite directions, <u>we have to do all the same</u> but using v_{AT}=v_A+v_T (<em>the train must see the car advancing at a faster speed</em>), so repeating the process:

v_{AT}=(95km/h)+(75Km/h)=170Km/h

t = \frac{L}{v_{AT}} = \frac{1.3Km}{170Km/h} = 0.00765h=27.53s

d=v_At=(95Km/h)(0.00765h)=0.73Km

5 0
3 years ago
An engine takes in 2400 J of heat, and rejects 1880 J of heat into the air. What is the efficiency of the engine? (No Unit)
Galina-37 [17]

Answer:

.2166 repeating or 21.66% repeating

Explanation:

In attached image

8 0
3 years ago
A 2.00 kg block is placed against a spring on a frictionless 36° incline. the spring, whose spring constant is 19.8n/cm, is com
alekssr [168]
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - brainly.com/question/1581851#readmore
5 0
3 years ago
Other questions:
  • The labels of the axes in a line graph consist of _____. A. only the units of measurement B. only the variable name C. the varia
    11·2 answers
  • If you walk eight blocks north and then three blocks south from your home what is your position compared to your home? what dist
    15·1 answer
  • Kirchhoff's loop rule for circuit analysis is an expression of which of the following? Conservation of charge Conservation of en
    6·1 answer
  • In midair in the international space station a 1 kg chunk of putty moving at 1 m/s collides with and sticks to a 5 kg chunk of p
    14·1 answer
  • How do you use the SI conversion tool to perfom metric conversions?
    15·1 answer
  • Select all the correct answers.
    10·2 answers
  • Four wires are made of the same highly resistive material, cut to the same length, and connected in series. Wire 1 has resistanc
    8·1 answer
  • Rgfffffffffffffffffffffffffffffffffffffffffffffffffffffff
    7·1 answer
  • What is the formula of Kinetic Energy​
    6·2 answers
  • 4. The fastest runner in a track and field event is the one with the<br>​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!