The size conductor that should be used to supply each motor is 12 AWG and the size conductor that should be used for the feeder conductor is 1/0AWG.
<h3>Size conductor</h3>
a. Using NEC table 430.250
Running connect for 150HP connected to 460V = 21 A
Conductor size=25% current to 125% current (Increase)
Increase current=21×125/100
Increase current=26.25 A
Nearest standard conductor size using NEC table 310.15(B)(16)=25 A
Since the motor contain NEMA design code the conductor will be choosing from 75° column which means that the size conductor that should be used to supply each motor is 12AWG copper conductors.
b. Feeder conductor
Using NEC section 430.24 plus ampere rating of other motors
Running current
Using NEC Table 430.250
Running current=26.25+21+21+21+21+21
Running current=131.25 A
The value that is greater than 131.25 A under 75° column of NEC Table 310 (B)(16) is 150 A which means that the size conductor that should be used for the feeder conductor is 1/0 AWG conductors.
Therefore the size conductor that should be used to supply each motor is 12 AWG and the size conductor that should be used for the feeder conductor is 1/0AWG.
Learn more about size conductor here: brainly.com/question/14825264
#SPJ1
Answer:
,
, ![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
Explanation:
Let suppose that fluid is incompressible and diffuser works at steady state. A diffuser reduces velocity at the expense of pressure, which can be modelled by using the Principle of Mass Conservation:




The following relation are found:

The new relationship is determined by means of linear interpolation:


After some algebraic manipulation, the following for the velocity as a function of position is obtained hereafter:


![v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1 \right)\cdot x \right]^{-1}](https://tex.z-dn.net/?f=v%20%28x%29%20%3D%20v_%7Bin%7D%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%5Ccdot%20x%20%5Cright%5D%5E%7B-1%7D)
The acceleration can be calculated by using the following derivative:

The derivative of the velocity in terms of position is:
![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
The expression for acceleration is derived by replacing each variable and simplifying the resultant formula.
Transfer Function Of A System is explained in the following way
Explanation:
1.To find the transfer function, first take the Laplace Transform of the differential equation (with zero initial conditions). Recall that differentiation in the time domain is equivalent to multiplication by "s" in the Laplace domain. The transfer function is then the ratio of output to input and is often called H(s)
2.The Transfer function of a system is the relationship of the system's output to its input, represented in the complex Laplace domain.
3.A transfer function is a convenient way to represent a linear, time-invariant system in terms of its input-output relationship. ... The key advantage of transfer functions is that they allow engineers to use simple algebraic equations instead of complex differential equations for analyzing and designing systems.
4.The properties of transfer function are given below: The ratio of Laplace transform of output to Laplace transform of input assuming all initial conditions to be zero. ... The transfer function of a system does not depend on the inputs to the system. The system poles and zeros can be determined from its transfer function.
Answer: a. Leave the lane closest to the emergency as soon as it is safe to do so, or slow down to a speed of 20 MPH below the posted speed limit.
Explanation:
Giving a way to the law enforcement vehicle and a medical emergency vehicle is necessary. If one approaches an emergency vehicle parked along the roadway one should change the lane as the vehicle may not move and the driver may also waste his or her time also one should also slow down his or her speed while approaching the vehicle as most of the emergency vehicle are in rush to reach the hospital so the driver should maintain some distance with the medical emergency vehicle.
Answer:
![\left[\begin{array}{ccc}10&0&0\\14&25&0\\57&18&39\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%260%260%5C%5C14%2625%260%5C%5C57%2618%2639%5Cend%7Barray%7D%5Cright%5D)
Explanation:
A lower triangular matrix is one whose elements above the main diagonal are zero meanwhile all the main diagonals elements and below are nonzero elements. This is one of the two existing types of triangular matrixes. Attached you will find a image referring more about triangular matrixes.
If there is any question, just let me know.