Answer:
R
Step-by-step explanation:
7 is a prime number, which means it can't be simplified. This fraction is already in simplest form, also because 25 and 7 don't have any common factors.
The rule of a function is:
You CANNOT have one x-value with multiple different y values in the same function. You can however have different x values with the same y value.
Also for reference: independent means x value and dependent means y- value.
The first answer is not a function because as you can see there is one x-value with multiple y values.
second answer IS a function because as I said before you can have different x values with the same y value
third answer is a function again because you can have different x values with same y value
number four isn't a function bc again the -2 x value has 2 different y Values.
y = 5 x +3 is the final equation when y = 5 x 3 units up
<u>Step-by-step explanation:</u>
In mathematics, a function is a relation between sets that associates to every element of a first set exactly one element of the second set. Typical examples are functions from integers to integers or from the real numbers to real numbers.
Here we have , y=5x . Function y = 5x is a straight line passing through origin and having a slope of 5 . Now we need to increment this function 3 units up i.e. y = 5x + 3 , This a straight line passing through x-axis at
and y-axis at 3. For your reference , following graph of y= 5x and y = 5x + 3 is attached .
Responder:
c. x menos 25 menos estilo en línea fracción 4 entre 19 fin estilo paréntesis izquierdo x menos 25 paréntesis derecho igual 3
Explicación paso a paso:
Dado lo siguiente:
Cantidad original de gasolina en el tanque de combustible = x
Gasolina consumida en el primer viaje = 25 litros
Gasolina restante después del primer viaje = (x - 25) litros
Gasolina consumida en el segundo viaje = 4/19 de lo que queda, es decir;
(4/19) * (x - 25)
Gasolina restante después del segundo viaje = 3 litros
Cantidad inicial - cantidad consumida en el primer viaje - 4/19 de la cantidad restante después del primer viaje = 3
La gasolina que queda después del segundo viaje se puede modelar mediante la ecuación:
x - 25 - 4/19 (x - 25) = 3