The color of light that a star emits is somewhat related to its age, whereas the color of light that we actually <em>observe</em> from a star is related to the speed at which it's moving with respect to us.
The answer is C) <span>The higher frequencies of visible light were scattered by the colloid particles.</span>
The water molecules with a slower speed are escaping
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°
Answer:
Membrane potential
Explanation:
Membrane potential is describes the difference in electrical charge across a membrane.
The difference in potential between exterior and interior of the biological cell is known as Membrane potential.Generally it is denoted by millivolts like mV and varies from -80 V to -40 V.
So the answer is Membrane potential