Answer:
When she stretches her arms out,<em> B) her angular speed ω increases due to her moment of inertia decreasing</em>
Explanation:
The angular momentum of a rotating object is defined as the product of its moment of inertia and angular speed.
<em>L = I ω</em>
<em>where</em>
- <em>L is the angular momentum</em>
- <em>I is the moment of inertia</em>
- <em>ω is the angular speed</em>
<em />
According to the principle of conservation of angular momentum, if there is no external torque, angular momentum of the skater must remain conserved. If the initial and final moment of inertia is <em>I_i and I_f </em>while corresponding angular velocities are <em>ω_i and ω_f , </em>then the principle of conservation of angular momentum can be expressed as the following equation:
<em>(I_f) (ω_f) = (I_i) (ω_i)</em>
<em>ω_f / ω_i = I_i / I_f</em>
<em />
From the expression above, we can see that if the moment of inertia decreases, angular velocity would increase to conserve angular momentum of the skater.
Therefore, When she stretches her arms out,<em> her angular speed ω increases due to her moment of inertia decreasing.</em>
Answer: 1.32 m/s^2
Explanation:
Centripetal acceleration is given by the formula
a = ( v^2 ) / r
where a is centripetal acceleration, v is velocity and r is radius.
We know that,
v = 5 m/s
r = 19m
Now,
a = ( v^2 ) / r
a = ( 5^2 ) / 19
a = 25 / 19
a = 1.32 m/s^2
Gamma rays have the shortest wavelength.
Answer:
Control of air–fuel ratio
Oxygen sensors tell the ECU whether the engine is running rich (too much fuel or too little oxygen) or running lean (too much oxygen or too little fuel) as compared to ideal conditions (known as stoichiometric).
Explanation:
Vector is perpendicular to x axis or i component.
Hence i component is 0
j component is 63.5
