1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
2 years ago
14

Supposing you were in space in a weightless environment, would it require a force to set an object in motion

Physics
1 answer:
Jobisdone [24]2 years ago
7 0

Yes.  If your smartphone was floating in front of your face, motionless
relative to you, it would require a force to start it moving toward you or
away from you. 

But there's no minimum force required.  ANY force, no matter how small,
even smaller than the smallest force that you can imagine, would set it in
motion. 

The thing is, though, that the smaller the force acting on it, the smaller
acceleration it would get, and the slower it would move away from where
it is. 

So if, say, you wanted to send it across the crew compartment and over
to your sleeping bag on the wall, and you had all day to watch it mope
along over there, you might breathe on it, and the force of your breath
would set it in slow motion in that direction.  But if you wanted to throw it
at your crewmate, you'd need to give it more force.
  
You might be interested in
the nucleus and the subatomic particles in the nucleus, what is the charge of the nucleus of an atom?
pychu [463]
The Nucleus contains Protons and Neutrons.

The Neutrons does not have a charge.

The Protons are positively charge.

Hence the charge on the Nucleus, would be the charge of the proton, which is positive.

Hence Nucleus is Positively Charged.
4 0
3 years ago
Choose the four major environmental
creativ13 [48]
B that’s the answer your welcome
6 0
3 years ago
A ray of light passes from air into a block of clear plastic. How does the angle of incidence in the air compare to the angle of
andre [41]

Answer:

The angle of incidence is greater than the angle of refraction

Explanation:

Refraction occurs when a light wave passes through the boundary between two mediums.

When a ray of light is refracted, it changes speed and direction, according to Snell's Law:

n_1 sin \theta_1 = n_2 sin \theta_2

where :

n_1 is the index of refraction of the 1st medium

n_2 is the index of refraction of the 2nd medium

\theta_1 is the angle of incidence (the angle between the incident ray and the normal to the boundary)

\theta_2 is the angle of refraction (the angle between the refracted ray and the normal to the boundary)

In this problem, we have a ray of light passing from air into clear plastic. We have:

n_1=1.00 (index of refraction of air)

n_2=1.50 approx. (index of refraction in clear plastic)

Snell's Law can be rewritten as

sin \theta_2 =\frac{n_1}{n_2}sin \theta_1

And since n_2>n_1, we have

\frac{n_1}{n_2}

And so

\theta_2

Which means that

The angle of incidence is greater than the angle of refraction

6 0
3 years ago
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
Help please fast + i dont want an answer from g**gle .
velikii [3]
7) 6, i believe, (Cu) 1 atom+ (S) 1 atom+(0)4 atoms.
7 0
3 years ago
Other questions:
  • Can someone help me on 2 science question,
    9·2 answers
  • How does reflection differ from refraction and diffraction?
    5·1 answer
  • An explosion that destroys a massive star is called a
    14·1 answer
  • Charged particles posses a region of influence also called a (an)
    7·1 answer
  • Which theory states that if you are forced to smile at an event, you will enjoy it? A. The Schachter-Singer theory B. The Lazaru
    9·1 answer
  • What is the resistance of resistor R3?
    14·1 answer
  • A starship is circling a distant planet of radius R. The astronauts find that the free-fall acceleration at their altitude is ha
    15·1 answer
  • Given the distance between the crest of one wave and the crest of the next wave, you can determine the?
    14·1 answer
  • how does the kinetic energy of particles relate to the temperature of the substance containing those particles, also show the eq
    10·1 answer
  • A 40kg cart gains a KE of 200J. How fast does it go?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!