1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
14

A hungry 169169 kg lion running northward at 77.377.3 km/hr attacks and holds onto a 31.731.7 kg Thomson's gazelle running eastw

ard at 63.863.8 km/hr. Find the final speed of the lion–gazelle system immediately after the attack.

Physics
2 answers:
navik [9.2K]3 years ago
7 0

Answer:  75,242.9 m/s

Explanation:

from the question we are given the following parameters

mass of Lion (ML) = 169,169 kg

velocity of lion (VL) = 777,377.7 m/s

mass of Gazelle (Mg) = 31,731.7 kg

velocity of Gazelle (Vg) = 63,863.8 kg

mass of Lion and Gazelle (M) = 200,900.7 kg

velocity of Lion and Gazelle (V) = ?

The first figure below shows the motion of the Lion and Gazelle with their direction.

The second diagram shows the motion of the Lion and Gazelle with their directions rearranged to form a right angle triangle.

from the triangle formed we can get the velocity of the Lion and Gazelle immediately after collision using their momentum and Phytaghoras theorem

momentum = mass x velocity

momentum of the Lion = 169,169 x 77,377.3 = 13,089,840,463.7 kgm/s

momentum of the Gazelle = 31,731.7 x 63,863.8 = 2,026,506,942.46 kgm/s

momentum of the Lion and Gazelle = 200,900.7  x V

now applying Phytaghoras theorem we have

13,089,840,463.7 + 2,026,506,942.46 =  200,900.7 x V

15,116,347,406.16 = 200,900.7 x V

V = 75,242.9 m/s

liq [111]3 years ago
4 0

The final speed of the lion–gazelle system immediately after the attack is about 65.9 km/hr

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\large {\boxed {F = ma }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>a = Acceleration ( m )</em>

\texttt{ }

\large {\boxed {F = \Delta (mv) \div t }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>v = Velocity of Object ( m/s )</em>

<em>t = Time Taken ( s )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of lion = m₁ = 169 kg

velocity of lion = v₁ = 77.3 j km/hr

mass of gazelle = m₂ = 31.7 kg

velocity of gazelle = v₂ = 63.8 i km/hr

<u>Asked:</u>

final speed = v = ?

<u>Solution:</u>

<em>We will use </em><em>Conservation of Momentum</em><em> to solve the problem as follows:</em>

p_1 + p_2 = p

m_1 v_1 + m_2 v_2 = ( m_1 + m_2 ) \overrightarrow{v}

169 ( 77.3 \widehat{j} ) + 31.7 ( 63.8 \widehat{i} ) = ( 169 + 31.7 ) \overrightarrow{v}

\overrightarrow{v} \approx 65.1 \widehat{j} + 10.1 \widehat{i}

|\overrightarrow{v}| \approx \sqrt{65.1^2 + 10.1^2}

|\overrightarrow{v}| \approx 65.9 \texttt{ km/hr}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

You might be interested in
What is the significance of the nose end marking on a rocket or missile?
Gemiola [76]
If you're referring to the different colors that usually occur at the tip of missles, rockets and some other aircraft, it either a) signifies the end of a particular plate of metal, fabricated specifically to be for the nose. Sometimes these can even be a different alloy or metal all together. or b) this shows where the curved surface begins, so in the case of damage or imperfections due to wear, they can be repaired and measured more easily. The shape of the nose is extremely important for smooth flight, and a dent or bump formed on it can make the aircraft unstable. If you can measure from where the curve starts by the difference in color, it makes repairing or re-fabricating the part much easier. Many of these curves aren't as simple as they appear.
5 0
3 years ago
Time dilation: A missile moves with speed 6.5-10 m/s with respect to an observer on the ground. How long will it take the missil
tatyana61 [14]

Answer:

The time taken by missile's clock is 4.6\times 10^{6} s

Solution:

As per the question:

Speed of the missile, v_{m = 6.5\times 10^{3}} m/s

Now,

If 'T' be the time of the frame at rest then the dilated time as per the question is given as:

T' = T + 1

Now, using the time dilation eqn:

T' = \frac{T}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

\frac{T'}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

\frac{T + 1}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

1 + \frac{1}{T} = \frac{1}{\sqrt{1 + (\frac{v_{m}}{c})^{2}}}

1 + \frac{1}{T} = (1 + (\frac{v_{m}}{c})^{2})^{- \frac{1}{2}}         (1)

Using binomial theorem in the above eqn:

We know that:

(1 + x)^{a} = 1 + ax

Thus eqn (1) becomes:

1 + \frac{1}{T} = 1 - \frac{- 1}{2}.\frac{v_{m}^{2}}{c^{2}}

T = \frac{2c^{2}}{v_{m}^{2}}

Now, putting appropriate values in the above eqn:

T = \frac{2(3\times 10^{8})^{2}}{(6.5\times 10^{3})^{2}}

T = 4.6\times 10^{6} s

4 0
3 years ago
A mother pats a child every time he throws a chocolate wrapper in the dustbin. This is an example of (A) Observational Learning
TEA [102]
D. I think, not sure
8 0
4 years ago
Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal
kirza4 [7]

At t =0, the velocity of A is greater than the velocity of B.

We are told in the question that the spacecrafts fly parallel to each other and that for the both  spacecrafts, the velocities are described as follows;

A: vA (t) = ť^2 – 5t + 20

B: vB (t) = t^2+ 3t + 10

Given that t = 0 in both cases;

vA (0) = 0^2 – 5(0) + 20

vA = 20 m/s

For vB

vB (0) = 0^2+ 3(0) + 10

vB = 10 m/s

We can see that at t =0, the velocity of A is greater than the velocity of B.

Learn more: brainly.com/question/24857760

Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal weight. Spacecrafts A and B are flying parallel to each other through space and are next to each other at time t= 0. For the interval 0 <t< 6 s, spacecraft A's velocity v A and spacecraft B's velocity vB as functions of t are given by the equations va (t) = ť^2 – 5t + 20 and VB (t) = t^2+ 3t + 10, respectively, where both velocities are in units of meters per second. At t = 6 s, the spacecrafts both turn off their engines and travel at a constant speed. (a) At t = 0, is the speed of spacecraft A greater than, less than, or equal to the speed of spacecraft B?

3 0
3 years ago
At ground level g is 9.8m/s^2. Suppose the earth started to increase its angular velocity. How long would a day be when people o
velikii [3]
Let s = rate of rotation 
<span>Let r = radius of earth = 6,400km </span>
<span>Then solving (s^2) r = g will give the desired rate, from which length of day is inferred. </span>
<span>People would not be thrown off. They would simply move eastward in a straight line while the curved surface of earth fell away from beneath them.</span>
5 0
4 years ago
Read 2 more answers
Other questions:
  • Calculate the mag-netic field (magnitude and direc-tion) at a point p due to a current i=12.0 a in the wire shown in fig. p28.68
    10·1 answer
  • A record turntable is rotating at 33 1 3 rev/min. a watermelon seed is on the turntable 5.0 cm from the axis of rotation. (a) ca
    15·2 answers
  • PLEASE HELP!!
    8·2 answers
  • PLEASE HELP I NEED IT RIGHT NOW
    13·2 answers
  • What carved the sharp features of this mountain
    9·2 answers
  • Which of the following is an example of a pattern? A. the steady increase of people choosing to drive rather than fly B. a group
    14·2 answers
  • Find the x-component of this vector: 47.3 m 39.4 ° Remember, angles are measured from the + x axis. x-component (m)
    7·2 answers
  • The distance from the Earth to the Sun equals 1 AU. Neptune is 30 AU from the Sun. How far is Neptune from the Earth? AU
    9·2 answers
  • According to quantum mechanics the motions of subatomic particles may be described as
    14·1 answer
  • Dr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme acceleration on the human body. On December
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!