1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
2 years ago
14

A hungry 169169 kg lion running northward at 77.377.3 km/hr attacks and holds onto a 31.731.7 kg Thomson's gazelle running eastw

ard at 63.863.8 km/hr. Find the final speed of the lion–gazelle system immediately after the attack.

Physics
2 answers:
navik [9.2K]2 years ago
7 0

Answer:  75,242.9 m/s

Explanation:

from the question we are given the following parameters

mass of Lion (ML) = 169,169 kg

velocity of lion (VL) = 777,377.7 m/s

mass of Gazelle (Mg) = 31,731.7 kg

velocity of Gazelle (Vg) = 63,863.8 kg

mass of Lion and Gazelle (M) = 200,900.7 kg

velocity of Lion and Gazelle (V) = ?

The first figure below shows the motion of the Lion and Gazelle with their direction.

The second diagram shows the motion of the Lion and Gazelle with their directions rearranged to form a right angle triangle.

from the triangle formed we can get the velocity of the Lion and Gazelle immediately after collision using their momentum and Phytaghoras theorem

momentum = mass x velocity

momentum of the Lion = 169,169 x 77,377.3 = 13,089,840,463.7 kgm/s

momentum of the Gazelle = 31,731.7 x 63,863.8 = 2,026,506,942.46 kgm/s

momentum of the Lion and Gazelle = 200,900.7  x V

now applying Phytaghoras theorem we have

13,089,840,463.7 + 2,026,506,942.46 =  200,900.7 x V

15,116,347,406.16 = 200,900.7 x V

V = 75,242.9 m/s

liq [111]2 years ago
4 0

The final speed of the lion–gazelle system immediately after the attack is about 65.9 km/hr

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\large {\boxed {F = ma }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>a = Acceleration ( m )</em>

\texttt{ }

\large {\boxed {F = \Delta (mv) \div t }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>v = Velocity of Object ( m/s )</em>

<em>t = Time Taken ( s )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of lion = m₁ = 169 kg

velocity of lion = v₁ = 77.3 j km/hr

mass of gazelle = m₂ = 31.7 kg

velocity of gazelle = v₂ = 63.8 i km/hr

<u>Asked:</u>

final speed = v = ?

<u>Solution:</u>

<em>We will use </em><em>Conservation of Momentum</em><em> to solve the problem as follows:</em>

p_1 + p_2 = p

m_1 v_1 + m_2 v_2 = ( m_1 + m_2 ) \overrightarrow{v}

169 ( 77.3 \widehat{j} ) + 31.7 ( 63.8 \widehat{i} ) = ( 169 + 31.7 ) \overrightarrow{v}

\overrightarrow{v} \approx 65.1 \widehat{j} + 10.1 \widehat{i}

|\overrightarrow{v}| \approx \sqrt{65.1^2 + 10.1^2}

|\overrightarrow{v}| \approx 65.9 \texttt{ km/hr}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

You might be interested in
The wavelength of the light is 0.63 micrometers. How much of this length stays in 1 centimeter
bazaltina [42]
11,066,669.
hope it help.
7 0
3 years ago
During a race, four competitors of the same weight rode identical bicycles for 10 minutes. At 8 minutes, which bicycle was movin
Sophie [7]

Answer:

All the competitors will move with the same velocity.

Explanation:

Here, the situations for each competitor are identical. Thus, they will exert the same force and hence, their velocities at each instants will be identical.

6 0
3 years ago
A small airplane has to reach a speed if 27.8 m/s to takeoff. It can accelerate at 2.00 m/s^2. What is the minimal length of run
pickupchik [31]
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s

3 0
3 years ago
A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication
koban [17]

Answer:

r = 4.24x10⁴ km.  

     

Explanation:

To find the radius of such an orbit we need to use Kepler's third law:

\frac{T_{1}^{2}}{T_{2}^{2}} = \frac{r_{1}^{3}}{r_{2}^{3}}

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km.                           </em>                              

From equation (1), r₁ is:

r_{1} = r_{2} \sqrt[3] {(\frac{T_{1}}{T_{2}})^{2}}                            

r_{1} = 3.84\cdot 10^{5} km \sqrt[3] {(\frac{1 d}{0.07481 y \cdot \frac{365 d}{1 y}})^{2}}      

r_{1} = 4.24 \cdot 10^{4} km      

Therefore, the radius of such an orbit is 4.24x10⁴ km.

I hope it helps you!

3 0
3 years ago
Determine the projection (magnitude and sign), or component, of vector v1 along the direction of vector v2. Your answer could be
professor190 [17]

Answer:

- 1.07 ft

Explanation:

V1 = (-5, 7, 2)

V2 = (3, 1, 2)

Projection of v1 along v2, we use the following formula

=\frac{\overrightarrow{V1}.\overrightarrow{V2}}{V2}

So, the dot product of V1 and V2 is = - 5 (3) + 7 (1) + 2 (2) = -15 + 7 + 4 = -4

The magnitude of vector V2 is given by

= \sqrt{3^{2}+1^{2}+2^{2}}=3.74

So, the projection of V1 along V2 = - 4 / 3.74 = - 1.07 ft

Thus, the projection of V1 along V2 is - 1.07 ft.

so we need to find the direction of v2

7 0
3 years ago
Other questions:
  • Explain how fossil fuel use in the US makes us vulnerable to the demands of foreign countries.
    12·2 answers
  • At the instant a traffic light turns green, a car starts from rest with a given constant acceleration of 0.5 m/s squared. Just a
    12·1 answer
  • Machines
    7·2 answers
  • A force of 6.00 newtons on a car's bumper makes an angle of 28.5 degrees with the ground. What is the vertical component of this
    9·1 answer
  • Which statement correctly describes the quantitative relationship between acceleration and net force on an object shown in the d
    5·1 answer
  • States of matter depend in part on the blank of an item
    9·1 answer
  • Humanity is faced by many challenges and problems.
    9·1 answer
  • If Mars were the same size as Mercury (instead of its actual size), which surface features would it have?
    7·1 answer
  • Why was 6 afraid of 7​
    12·1 answer
  • Parallel incident rays appear to bounce like they have all originated from the same point. What is this point called?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!