Answer:
Here the circuit in which a 4Ω resistor resistor is connected in series and two 8Ω resistor resistors are connected in parallel. Also, ammeter and voltmeter connected in series and parallel circuit respectively.
Now,
The maximum power of each resistance is 16 W
The 4Ω resistor is linked in series with the circuit.
so, P o w e r = I
two
R, here i is the current through the resistor resistor R
1 6 = I
two
∗ 4 Ω
i = 2A
Now 2A passes through parallel resistors of 8Ω resistance.
we know that, in parallel, the potential difference must be constant,
the current is divided into two parts, because the same resistance current in each resistance will be half. then the current through each resistor in parallel is
2 A
two
.
= 1 A
So finally the current through the 4Ω resistor = 2 A
current through each 8Ω resistor = 1 A
Explanation:
I hope this answer has helped you
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m
First law is Conservation of Energy
Second is that entropy of an isolated system will always increase with time.
Entropy is the change of disorder through time. The best statement which relates to the 2nd law is C. Thermal energy flows from areas of higher to lower temperature